Number of payments to reach an investment goal

  • Context: MHB 
  • Thread starter Thread starter ebroc
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around calculating the number of payments required to reach a specific investment goal, particularly when starting with an existing balance. Participants explore the implications of compounded interest and monthly contributions in the context of financial planning.

Discussion Character

  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant presents a formula for calculating the number of periods needed to reach a future value starting from zero, using logarithmic functions.
  • Another participant introduces variables for existing investments, monthly contributions, and interest rates, proposing a recursive approach to model the investment growth over time.
  • A third participant suggests a compound interest formula combined with the future value of an annuity formula to address the specific scenario of starting with an existing balance and making regular contributions.
  • Participants discuss the potential to solve for the number of periods using logarithmic methods based on the proposed formulas.

Areas of Agreement / Disagreement

There is no clear consensus on a single method to calculate the number of payments needed, as multiple approaches and formulas are presented, indicating a variety of perspectives on the problem.

Contextual Notes

Some assumptions regarding interest rates, compounding frequency, and the nature of contributions may not be fully articulated, and the discussion includes different mathematical formulations that may lead to varying interpretations.

ebroc
Messages
2
Reaction score
0
Hi

I'm trying to calculate at what point my investment will reach it's target. I'm fine doing this starting from zero using

number of periods = log(1+ ((FV * R)/P)) / log (1+R)

FV = Future Value
R = Rate
P = Monthly Investment

But what if I already have \$20000 in my account and want to know when it will reach \$50000 if I am saving \$1000 from now onwards. Assuming interest is compounded monthly.

Hope this is clear. Thanks for looking

Regards

E
 
Physics news on Phys.org
Let $P$ = monthly investment, $A$ = existing investment, $R$ = monthly interest rate, and $n$ = the number of deposits.

Also, let $B_n$ be the account balance after payment $n$, and $B_0=A+P$ is the starting balance.

Consider the recursion:

[math]B_{n}=(1+R)B_{n-1}+P\tag{1}[/math]

[math]B_{n+1}=(1+R)B_{n}+P\tag{2}[/math]

Subtracting (1) from (2) yields the linear homogeneous recursion:

[math]B_{n+1}=(2+R)B_{n}-(1+R)B_{n-1}[/math]

whose associated auxiliary equation is:

[math]r^2-(2+R)r+(1+R)=0[/math]

[math](r-(1+R))(r-1)=0[/math]

Thus, the closed-form for our recursion is:

[math]B_n=k_1(1+R)^n+k_2[/math]

Using initial values, we may determine the coefficients $k_i$:

[math]k_1+k_2=B_0[/math]

[math]k_1(1+R)+k_2=(1+R)B_0+P[/math]

Solving this system, we find:

$$\left(k_1,k_2\right)=\left(B_0+\frac{P}{R},-\frac{P}{R}\right)$$

And so the solution is:

[math]B_n=\left(B_0+\frac{P}{R}\right)(1+R)^n-\frac{P}{R}[/math]

Solving for $n$, we obtain:

$$n=\frac{\ln\left(\dfrac{B_nR+P}{B_0R+P}\right)}{\ln(1+R)}$$
 
ebroc said:
Hi

I'm trying to calculate at what point my investment will reach it's target. I'm fine doing this starting from zero using

number of periods = log(1+ ((FV * R)/P)) / log (1+R)

FV = Future Value
R = Rate
P = Monthly Investment

But what if I already have \$20000 in my account and want to know when it will reach \$50000 if I am saving \$1000 from now onwards. Assuming interest is compounded monthly.

Hope this is clear. Thanks for looking

Regards

E
Compound interest formula plus FV of annuity formula (annuity due version, i.e. payments at beginning of period).
Thus,
$$50,000=200,000(1+i)^n+1,000(1+i)\frac{(1+i)^{n}-1}{i}$$

From your post, I take it that you can easily solve for n using logarithms.
 
Thank you both so much for your help. Your answers not only answered my question, but also a couple I hadn't even thought of. :D

Kind regards

E
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K