Number of permutations to obtain identity

Click For Summary
The discussion centers on determining the minimum number of adjacent transpositions required to transform a permutation f of [n] into the identity permutation, denoted as s*(f). It is established that the maximum value of s*(f) across all permutations of [n] is given by {n choose 2}, which equals n(n-1)/2. The conversation explores how to derive s*(f) by analyzing the structure of the permutation and the number of swaps needed to sort it into the identity order. A specific example is provided, illustrating that the worst-case scenario occurs when the permutation is in reverse order. The thread concludes by emphasizing the importance of counting adjacent transpositions and utilizing known formulas to sum them effectively.
lizarton
Messages
13
Reaction score
0

Homework Statement



Let s*(f) be the minimum number of transpositions of adjacent elements needed to transform the permutation f to the identity permutation. Prove that the maximum value of s*(f) over permutations of [n] is {n \choose 2}. Explain how to determine s*(f) by examining f.

Homework Equations



{n \choose 2} = \frac{n!}{k!(n-k)!}

Perhaps...
Definition: The identity permutation of [n] is the identity function from [n] to [n]; its word form is 1 2 ... n. A transposition of two elements in a permutation switches their positions in the word form.

A permutation f of [n] is even when P(f) is positive, and it is odd when P(f) is negative. When n = 1, there is one even permutation of [n] and no odd permutation. For n >= 2, there are n!/2 even permuatations and n!/2 odd permutations.

My book solves a problem that counts the number of exchanges of entries needed to sort the numbers into the order 1,2,...,n (given a list of n numbers 1 through n). The solution defines the nth iterate of f: A --> A.
Definition: The nth iterate of f: A --> A is the function f^{n} obtained by composing n successive applications of f.
Consequence: Since composition of functions is associative, we also have f^{k} o f^{n-k} whenever 0 <= k <= n.

The Attempt at a Solution



The number of subsets of length 2 of a permutation of length n is n choose 2. I can see that from the definition, but how does one formulate a formal proof from just the definition?

I can guess that the scenario requiring the most trials is when f is the permutation n...2 1.

Any help would be greatly appreciated!
 
Last edited:
Physics news on Phys.org
note that n choose 2 is (n-1)n/2.

imagine that f takes 1→k.

then (k-1 k)f takes 1→k-1.

similarly (k-2 k-1)(k-1 k)f takes 1→k-2

after applying at most k-1 such adjacent transpostions, we arrive a product:

(1 2)(2 3)...(k-1 k)f which takes 1→1.

ask yourself: what the maximum value of k?

now we have a permutation g that takes 1→1.

suppose g takes 2→m, and repeat.

won't you eventually wind up with the identity?

now sum the number of adjacent transpositions used, and use

a well-known formula for this sum.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
942
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
5
Views
2K
  • · Replies 22 ·
Replies
22
Views
960
  • · Replies 3 ·
Replies
3
Views
2K