MHB Number of solutions for system of equations

bargaj
Messages
2
Reaction score
0
Hello!

I have a simple question about solutions, better said number of solutions for this system of equations.

\[ \begin{cases} x_{1 } − x_{2 } + 3x_{3 } − 2x_{4 } = 1\\ −2x_{1 } + 2cx_{2 } − 4x_{3 } + 2x_{4 } = −7\\ − 2x_{3 } + (−c + 6)x_{4 } = 2c + 15\\ − 2x_{3 } + c^{2 }x_{4 } = c^{2 }\end{cases} \]

I know it's only possible that this system has either 0, 1 or \( \infty \) number of solutions, for different values of c:

\[ c = -3 \rightarrow \infty\\ c = 1 \rightarrow \infty\\ c = 2 \rightarrow 0 \\ c \in ℝ \setminus \{-3, 1, 2\} \rightarrow 1 \]

My question is: for which c has this system at the utmost 2 solutions? Should it be only for when the whole system has only one solution or also when it has none? Thank you for your help!
 
Physics news on Phys.org
YOU just said that such a system has either 0 or 1 or infinitely many solutions. So you know it is impossible to have 2 solutions. "At the utmost 2 solutions" must mean no solutions or 1 solution. There will be exactly one solution if c is such that the determinant of coefficients is NOT 0. There will be no solution if c is such that the determinant of coefficients is 0 but the right hand side is not.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top