MHB Number of solutions for system of equations

Click For Summary
The discussion centers on determining the number of solutions for a given system of equations based on the parameter c. It is established that the system can have either 0, 1, or infinitely many solutions depending on the value of c, with specific cases identified for c = -3 and c = 1 yielding infinitely many solutions, c = 2 yielding no solutions, and other values of c yielding a unique solution. The question posed is about the possibility of having "at most 2 solutions," which is clarified to mean either no solutions or one solution, as having exactly two solutions is impossible. The conditions for having one solution involve the determinant of the coefficients being non-zero, while having no solutions occurs when the determinant is zero but the right-hand side is not. Overall, the conversation emphasizes the relationship between the determinant and the number of solutions in the context of the parameter c.
bargaj
Messages
2
Reaction score
0
Hello!

I have a simple question about solutions, better said number of solutions for this system of equations.

\[ \begin{cases} x_{1 } − x_{2 } + 3x_{3 } − 2x_{4 } = 1\\ −2x_{1 } + 2cx_{2 } − 4x_{3 } + 2x_{4 } = −7\\ − 2x_{3 } + (−c + 6)x_{4 } = 2c + 15\\ − 2x_{3 } + c^{2 }x_{4 } = c^{2 }\end{cases} \]

I know it's only possible that this system has either 0, 1 or \( \infty \) number of solutions, for different values of c:

\[ c = -3 \rightarrow \infty\\ c = 1 \rightarrow \infty\\ c = 2 \rightarrow 0 \\ c \in ℝ \setminus \{-3, 1, 2\} \rightarrow 1 \]

My question is: for which c has this system at the utmost 2 solutions? Should it be only for when the whole system has only one solution or also when it has none? Thank you for your help!
 
Physics news on Phys.org
YOU just said that such a system has either 0 or 1 or infinitely many solutions. So you know it is impossible to have 2 solutions. "At the utmost 2 solutions" must mean no solutions or 1 solution. There will be exactly one solution if c is such that the determinant of coefficients is NOT 0. There will be no solution if c is such that the determinant of coefficients is 0 but the right hand side is not.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 2 ·
Replies
2
Views
624
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
3K