MHB Number of solutions for system of equations

bargaj
Messages
2
Reaction score
0
Hello!

I have a simple question about solutions, better said number of solutions for this system of equations.

\[ \begin{cases} x_{1 } − x_{2 } + 3x_{3 } − 2x_{4 } = 1\\ −2x_{1 } + 2cx_{2 } − 4x_{3 } + 2x_{4 } = −7\\ − 2x_{3 } + (−c + 6)x_{4 } = 2c + 15\\ − 2x_{3 } + c^{2 }x_{4 } = c^{2 }\end{cases} \]

I know it's only possible that this system has either 0, 1 or \( \infty \) number of solutions, for different values of c:

\[ c = -3 \rightarrow \infty\\ c = 1 \rightarrow \infty\\ c = 2 \rightarrow 0 \\ c \in ℝ \setminus \{-3, 1, 2\} \rightarrow 1 \]

My question is: for which c has this system at the utmost 2 solutions? Should it be only for when the whole system has only one solution or also when it has none? Thank you for your help!
 
Physics news on Phys.org
YOU just said that such a system has either 0 or 1 or infinitely many solutions. So you know it is impossible to have 2 solutions. "At the utmost 2 solutions" must mean no solutions or 1 solution. There will be exactly one solution if c is such that the determinant of coefficients is NOT 0. There will be no solution if c is such that the determinant of coefficients is 0 but the right hand side is not.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top