nino
- 2
- 0
Let be K(n)=all the numbers obtained with the conditions of your problem.
***If n=1 then k(n)=1
1
***If n=2 then k(n)=3
11
12
22
***If n=3 then k(n)=10
111
112
113
122
123
133
222
223
233
333
***If n=4 then k(n)=35
1111
1112
1113
1114
1122
1123
1124
1133
1134
1144
1222
1223
1224
1233
1234
1244
1333
1334
1344
1444
2222
2223
2224
2233
2234
2244
2333
2334
2344
2444
3333
3334
3344
3444
4444
It is easy to see that k(n)= S(1<=i<=n) [S(1<=j<=i) of {T(sub_i)(sub_j)}]
where T(sub_i)(sub_j) is the j-th triangular number and S represents a sumatoria (to add up)
Note: I hope you can understand me, I don't speak and write english very well.
***If n=1 then k(n)=1
1
***If n=2 then k(n)=3
11
12
22
***If n=3 then k(n)=10
111
112
113
122
123
133
222
223
233
333
***If n=4 then k(n)=35
1111
1112
1113
1114
1122
1123
1124
1133
1134
1144
1222
1223
1224
1233
1234
1244
1333
1334
1344
1444
2222
2223
2224
2233
2234
2244
2333
2334
2344
2444
3333
3334
3344
3444
4444
It is easy to see that k(n)= S(1<=i<=n) [S(1<=j<=i) of {T(sub_i)(sub_j)}]
where T(sub_i)(sub_j) is the j-th triangular number and S represents a sumatoria (to add up)
Note: I hope you can understand me, I don't speak and write english very well.