Numerical analysis w/euler's method

Click For Summary
The discussion focuses on applying Euler's method to solve a differential equation related to the decay of a radioactive contaminant in a reactor. The decay rate is given by the equation dc/dt = -kc, where k is a constant. Participants emphasize the importance of understanding Euler's method, which involves iterative calculations to approximate solutions. A specific example is provided to illustrate the method, using initial conditions and a defined step size. The conversation highlights the need for clarity in applying mathematical concepts to practical problems.
solowa4
Messages
3
Reaction score
0
The amount of a uniform distributed radioactive contaminant contained in a closed reactor is measured by its concentration (c) (Becquerel/liter or Bq/L). The contaminant decreases at a decay rate proportional to its concentration; that is

Decay rate(dc/dt)= -kc
Where (dc/dt) is the change in mass, (k) is a constant with units of (day^-1), and (-kc) is the decrease by decay.

a-use euler's method to solve this eq from t=0 to 1 day with k=0.2 day^-1. Employ a step size of Delta t = 0.1 day. The concentration at t=0 is 10 Bq/L.

b-plot the solution on a semilog graph (ie (ln c) versus (t) and determine th slope.

I am at a loss at where to begin or accomplish this.
 
Physics news on Phys.org
Welcome to PF!

Well, the first step is understanding how Euler's Method works. What do you know about it?
 
Not much as I just started the class :( That's why it is giving me difficult time
 
I have already looked at this and other sources with no help to my problem.
Thanks for your help
 
solowa4 said:
I have already looked at this and other sources with no help to my problem

Sure it does. It explains the methodology:

y(n+1) = y(n) + h*y'(n)
t(n+1) = t(n) + h

For the Wiki example (i.e. y' = y and h = 1)

t(0) = 0, y(0) = 1, y'(0) = y(0) = 1
t(1) = 0 + 1 = 1, y(1) = y(0) + h*y'(0) = 1 + 1*1 = 2, y'(1) = y(1) = 2
t(2) = 1 + 1 = 2, y(2) = y(1) + h*y'(1) = 2 + 1*2 = 4, y'(2) = y(2) = 4
t(3) = 3 + 1 = 3, y(3) = y(2) + h*y'(2) = 4 + 1*4 = 8, y'(3) = y(3) = 8

In your case, you know that t(0) = 0, y(0) = 10, h = 0.1, and y' = -ky with known value for k.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 10 ·
Replies
10
Views
6K
Replies
1
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 131 ·
5
Replies
131
Views
9K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
9K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
5K