I Observables on the "3 polarizers experiment"

DougFisica
Messages
2
Reaction score
0
TL;DR Summary
Analogy between 3 polarizers experiment and Stern-Gerlach experiment
Observables on the "3 polarizers experiment"
Hi guys,

I was analyzing the 3 polarizers experiment. This one: (first 2 minutes -> )

Doing the math (https://faculty.csbsju.edu/frioux/polarize/POLAR-sup.pdf) I realized that the process is similar to the Stern-Gerlach' experiment.

Using spins for the Stern Gerlach experiment: if you prepare a spin up (Z component) sample (first filter), and pass it to a second filter that measure the X component of the spin. You lose information about the Z component.

I undertand that Z and X component are non-commuting observables.

My question is:

Is there there an analogy for the polarizers experiment?

For example, if I measure the vertical component (first polarizer), I cannot get information about the 45º component (second polarizer).

I would guess the answer is Yes, however I cannot understand the "45º component" physical meaning.
 
Physics news on Phys.org
DougFisica said:
For example, if I measure the vertical component (first polarizer), I cannot get information about the 45º component (second polarizer).

I would guess the answer is Yes, however I cannot understand the "45º component" physical meaning.
What you are calling “the 45º component” is the probability amplitude that the photon will pass through a filter oriented at 45 degrees. No matter what that amplitude was before the vertical polarizer (it could even have been 1, if the photon had previously passed through a polarizer at 45º) the vertical measurement leaves that amplitude at ##\sqrt{2}/2## - we no longer know anything about the previous state and the photon has a 50% chance of passing a 45º filter.

To continue the analogy with the Stern-Gerlach measurement: just as the particle state “spin up” can be written as the vector sum of the states “spin left” and “spin right”, the vertically polarized state of a photon can be written as the vector sum of the states “polarized at 45º” and “polarized at -45º“.
 
  • Like
Likes DougFisica and vanhees71
Nugatory said:
Thanks for the answer =)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top