Observed Redshift from Moving Source: Deriving the Result

Click For Summary
SUMMARY

The discussion focuses on deriving the observed redshift from a moving galaxy, emphasizing the relationship between peculiar motion and cosmological redshift as expressed by the formula (1+z_{pec})(1+z_{cosm}). Key concepts include the four-velocities of the galaxy and observer, as well as the conservation of energy along the photon's path. The Schwarzschild metric is utilized to illustrate gravitational redshift, leading to the conclusion that the observed frequency can be derived from the source frequency using the relation ω_obs = √((1-2m/r_source)/(1-2m/r_obs)) ω_source.

PREREQUISITES
  • Understanding of general relativity and four-velocities
  • Familiarity with the Schwarzschild metric
  • Knowledge of cosmological redshift and its implications
  • Basic concepts of electromagnetic wave behavior in curved spacetime
NEXT STEPS
  • Study the derivation of redshift in FRW spacetime
  • Learn about the conservation laws in general relativity
  • Explore the implications of the FRW metric on cosmological models
  • Investigate the relationship between gravitational redshift and the Schwarzschild solution
USEFUL FOR

Astronomers, physicists, and students of general relativity who are interested in the mechanics of redshift and its derivation from moving sources in cosmological contexts.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
If a galaxy is receding from us, then the 1+redshift observed on Earth is the product ##(1+z_{pec})(1+z_{cosm})## of the doppler redshift due to the peculiar motion of the galaxy and the cosmological redshift due to the FRW metric. It makes sense if we think about some intermediate observers (e.g. someone stationary w.r.t. hubble flow but at the same position instantaneously as the emitting galaxy, who measures the doppler part only). Could someone show me how to derive the result from the general definitions? i.e. the galaxy has some 4-velocity ##u_{gal} = (u_{gal}^t, u_{gal}^r, 0,0)##, and an observer attached to the galaxy measures\begin{align*}
\omega_{em} = u_{gal} \cdot p = u_{gal}^t p^t - \frac{a^2}{1-Kr^2} u_{gal}^r p^r
\end{align*}where ##p## is the photon 4-momn. And the earth observer measures ##\omega_{obs} = u_{earth}^t p^t##. The constraints are that both 4-velocities are normalised to ##u \cdot u = 1##, and ##p^t = E## is conserved along the photon's path. That isn't enough constraits to derive the result, I think?
 
Last edited:
Physics news on Phys.org
All we can observe in GR is expressed by local invariant quantities. Indeed the observed frequency of an electromagnetic wave is ##\omega=u \cdot k##, where ##u## is the four-velocity of the observer and ##k## the wave-four-vector of the em. wave. For more about electrodynamics in GR, see

https://itp.uni-frankfurt.de/~hees/pf-faq/gr-edyn.pdf
 
ergospherical said:
##p^t = E## is conserved along the photon's path.
Are you sure? Remember cosmological redshift.
 
  • Like
Likes   Reactions: Vanadium 50 and vanhees71
In a static spacetime, i.e., if there are coordinates, for which the ##g_{\mu \nu}## are independent of the time coordinate, then ##p_t## is conserved along the "photon's" path.

Take Schwarzschild spacetime,
$$L=\frac{1}{2} [(1-2m/r) \dot{t}^2 - (1-2m/r)^{-1} \dot{r}^2 - r^2 (\dot{\vartheta}^2+\sin^2 \vartheta \dot{\varphi}^2).$$
For an observer "at rest", observing light from a source "at rest", indeed all you need to know is that
$$p_t=\frac{\partial L}{\partial \dot{t}}=(1-2m/r) \dot{t}.$$
From this you get
The four-velocity of the observer at rest is
$$u_{\text{obs}}^{\mu}=(1-2m/r_{\text{obs}})^{-1/2}(1,0,0,0).$$
Then
$$\omega_{\text{obs}}=p_t u_{\text{obs}}^t=p_t (1-2m/r_{\text{obs}})^{-1/2}.$$
For the frequency at the source you get
$$\omega_{\text{source}}=p_t u_{\text{source}}^t=(1-2m/r_{\text{source}})^{-1/2},$$
i.e.,
$$\omega_{\text{obs}}=\sqrt{\frac{1-2m/r_{\text{source}}}{1-2m/r_{\text{obs}}}} \omega_{\text{source}},$$
which describes (for ##r_{\text{source}}<r_{\text{obs}}##) the gravitational redshift.
 
vanhees71 said:
In a static spacetime
Which FRW spacetime is not.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 42 ·
2
Replies
42
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
7K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K