I Observed Redshift from Moving Source: Deriving the Result

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
If a galaxy is receding from us, then the 1+redshift observed on Earth is the product ##(1+z_{pec})(1+z_{cosm})## of the doppler redshift due to the peculiar motion of the galaxy and the cosmological redshift due to the FRW metric. It makes sense if we think about some intermediate observers (e.g. someone stationary w.r.t. hubble flow but at the same position instantaneously as the emitting galaxy, who measures the doppler part only). Could someone show me how to derive the result from the general definitions? i.e. the galaxy has some 4-velocity ##u_{gal} = (u_{gal}^t, u_{gal}^r, 0,0)##, and an observer attached to the galaxy measures\begin{align*}
\omega_{em} = u_{gal} \cdot p = u_{gal}^t p^t - \frac{a^2}{1-Kr^2} u_{gal}^r p^r
\end{align*}where ##p## is the photon 4-momn. And the earth observer measures ##\omega_{obs} = u_{earth}^t p^t##. The constraints are that both 4-velocities are normalised to ##u \cdot u = 1##, and ##p^t = E## is conserved along the photon's path. That isn't enough constraits to derive the result, I think?
 
Last edited:
Physics news on Phys.org
All we can observe in GR is expressed by local invariant quantities. Indeed the observed frequency of an electromagnetic wave is ##\omega=u \cdot k##, where ##u## is the four-velocity of the observer and ##k## the wave-four-vector of the em. wave. For more about electrodynamics in GR, see

https://itp.uni-frankfurt.de/~hees/pf-faq/gr-edyn.pdf
 
ergospherical said:
##p^t = E## is conserved along the photon's path.
Are you sure? Remember cosmological redshift.
 
  • Like
Likes Vanadium 50 and vanhees71
In a static spacetime, i.e., if there are coordinates, for which the ##g_{\mu \nu}## are independent of the time coordinate, then ##p_t## is conserved along the "photon's" path.

Take Schwarzschild spacetime,
$$L=\frac{1}{2} [(1-2m/r) \dot{t}^2 - (1-2m/r)^{-1} \dot{r}^2 - r^2 (\dot{\vartheta}^2+\sin^2 \vartheta \dot{\varphi}^2).$$
For an observer "at rest", observing light from a source "at rest", indeed all you need to know is that
$$p_t=\frac{\partial L}{\partial \dot{t}}=(1-2m/r) \dot{t}.$$
From this you get
The four-velocity of the observer at rest is
$$u_{\text{obs}}^{\mu}=(1-2m/r_{\text{obs}})^{-1/2}(1,0,0,0).$$
Then
$$\omega_{\text{obs}}=p_t u_{\text{obs}}^t=p_t (1-2m/r_{\text{obs}})^{-1/2}.$$
For the frequency at the source you get
$$\omega_{\text{source}}=p_t u_{\text{source}}^t=(1-2m/r_{\text{source}})^{-1/2},$$
i.e.,
$$\omega_{\text{obs}}=\sqrt{\frac{1-2m/r_{\text{source}}}{1-2m/r_{\text{obs}}}} \omega_{\text{source}},$$
which describes (for ##r_{\text{source}}<r_{\text{obs}}##) the gravitational redshift.
 
vanhees71 said:
In a static spacetime
Which FRW spacetime is not.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top