I Observed Redshift from Moving Source: Deriving the Result

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
If a galaxy is receding from us, then the 1+redshift observed on Earth is the product ##(1+z_{pec})(1+z_{cosm})## of the doppler redshift due to the peculiar motion of the galaxy and the cosmological redshift due to the FRW metric. It makes sense if we think about some intermediate observers (e.g. someone stationary w.r.t. hubble flow but at the same position instantaneously as the emitting galaxy, who measures the doppler part only). Could someone show me how to derive the result from the general definitions? i.e. the galaxy has some 4-velocity ##u_{gal} = (u_{gal}^t, u_{gal}^r, 0,0)##, and an observer attached to the galaxy measures\begin{align*}
\omega_{em} = u_{gal} \cdot p = u_{gal}^t p^t - \frac{a^2}{1-Kr^2} u_{gal}^r p^r
\end{align*}where ##p## is the photon 4-momn. And the earth observer measures ##\omega_{obs} = u_{earth}^t p^t##. The constraints are that both 4-velocities are normalised to ##u \cdot u = 1##, and ##p^t = E## is conserved along the photon's path. That isn't enough constraits to derive the result, I think?
 
Last edited:
Physics news on Phys.org
All we can observe in GR is expressed by local invariant quantities. Indeed the observed frequency of an electromagnetic wave is ##\omega=u \cdot k##, where ##u## is the four-velocity of the observer and ##k## the wave-four-vector of the em. wave. For more about electrodynamics in GR, see

https://itp.uni-frankfurt.de/~hees/pf-faq/gr-edyn.pdf
 
ergospherical said:
##p^t = E## is conserved along the photon's path.
Are you sure? Remember cosmological redshift.
 
  • Like
Likes Vanadium 50 and vanhees71
In a static spacetime, i.e., if there are coordinates, for which the ##g_{\mu \nu}## are independent of the time coordinate, then ##p_t## is conserved along the "photon's" path.

Take Schwarzschild spacetime,
$$L=\frac{1}{2} [(1-2m/r) \dot{t}^2 - (1-2m/r)^{-1} \dot{r}^2 - r^2 (\dot{\vartheta}^2+\sin^2 \vartheta \dot{\varphi}^2).$$
For an observer "at rest", observing light from a source "at rest", indeed all you need to know is that
$$p_t=\frac{\partial L}{\partial \dot{t}}=(1-2m/r) \dot{t}.$$
From this you get
The four-velocity of the observer at rest is
$$u_{\text{obs}}^{\mu}=(1-2m/r_{\text{obs}})^{-1/2}(1,0,0,0).$$
Then
$$\omega_{\text{obs}}=p_t u_{\text{obs}}^t=p_t (1-2m/r_{\text{obs}})^{-1/2}.$$
For the frequency at the source you get
$$\omega_{\text{source}}=p_t u_{\text{source}}^t=(1-2m/r_{\text{source}})^{-1/2},$$
i.e.,
$$\omega_{\text{obs}}=\sqrt{\frac{1-2m/r_{\text{source}}}{1-2m/r_{\text{obs}}}} \omega_{\text{source}},$$
which describes (for ##r_{\text{source}}<r_{\text{obs}}##) the gravitational redshift.
 
vanhees71 said:
In a static spacetime
Which FRW spacetime is not.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top