Observed Redshift from Moving Source: Deriving the Result

Click For Summary

Discussion Overview

The discussion centers on deriving the observed redshift from a moving source, specifically addressing the contributions from both peculiar motion and cosmological redshift within the framework of General Relativity (GR). Participants explore the mathematical formulations and physical interpretations related to the redshift phenomenon in different spacetime geometries.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests that the observed redshift is the product of the peculiar motion redshift and the cosmological redshift, and requests a derivation using the galaxy's 4-velocity and the observer's measurements.
  • Another participant emphasizes that observed quantities in GR are local invariants, specifically noting the relationship between the observer's four-velocity and the wave-four-vector of the electromagnetic wave.
  • A participant questions the conservation of energy along the photon's path, specifically in the context of cosmological redshift.
  • Discussion includes the conservation of momentum in static spacetimes, with a participant providing a detailed derivation involving Schwarzschild spacetime and gravitational redshift.
  • There is a challenge regarding the applicability of static spacetime concepts to FRW spacetime, with a participant asserting that FRW is not static.
  • Another participant argues that FRW spacetime is conformal to a static spacetime and references external material for further details on calculating cosmological redshift.

Areas of Agreement / Disagreement

Participants express differing views on the applicability of static spacetime concepts to FRW spacetime, and there is no consensus on the conservation of energy along the photon's path in the context of cosmological redshift. The discussion remains unresolved with multiple competing perspectives presented.

Contextual Notes

Participants reference specific mathematical formulations and constraints, but there are unresolved assumptions regarding the definitions and conditions under which the redshift is derived. The discussion also highlights the complexity of applying concepts from static spacetimes to dynamic cosmological models.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
If a galaxy is receding from us, then the 1+redshift observed on Earth is the product ##(1+z_{pec})(1+z_{cosm})## of the doppler redshift due to the peculiar motion of the galaxy and the cosmological redshift due to the FRW metric. It makes sense if we think about some intermediate observers (e.g. someone stationary w.r.t. hubble flow but at the same position instantaneously as the emitting galaxy, who measures the doppler part only). Could someone show me how to derive the result from the general definitions? i.e. the galaxy has some 4-velocity ##u_{gal} = (u_{gal}^t, u_{gal}^r, 0,0)##, and an observer attached to the galaxy measures\begin{align*}
\omega_{em} = u_{gal} \cdot p = u_{gal}^t p^t - \frac{a^2}{1-Kr^2} u_{gal}^r p^r
\end{align*}where ##p## is the photon 4-momn. And the earth observer measures ##\omega_{obs} = u_{earth}^t p^t##. The constraints are that both 4-velocities are normalised to ##u \cdot u = 1##, and ##p^t = E## is conserved along the photon's path. That isn't enough constraits to derive the result, I think?
 
Last edited:
Physics news on Phys.org
All we can observe in GR is expressed by local invariant quantities. Indeed the observed frequency of an electromagnetic wave is ##\omega=u \cdot k##, where ##u## is the four-velocity of the observer and ##k## the wave-four-vector of the em. wave. For more about electrodynamics in GR, see

https://itp.uni-frankfurt.de/~hees/pf-faq/gr-edyn.pdf
 
ergospherical said:
##p^t = E## is conserved along the photon's path.
Are you sure? Remember cosmological redshift.
 
  • Like
Likes   Reactions: Vanadium 50 and vanhees71
In a static spacetime, i.e., if there are coordinates, for which the ##g_{\mu \nu}## are independent of the time coordinate, then ##p_t## is conserved along the "photon's" path.

Take Schwarzschild spacetime,
$$L=\frac{1}{2} [(1-2m/r) \dot{t}^2 - (1-2m/r)^{-1} \dot{r}^2 - r^2 (\dot{\vartheta}^2+\sin^2 \vartheta \dot{\varphi}^2).$$
For an observer "at rest", observing light from a source "at rest", indeed all you need to know is that
$$p_t=\frac{\partial L}{\partial \dot{t}}=(1-2m/r) \dot{t}.$$
From this you get
The four-velocity of the observer at rest is
$$u_{\text{obs}}^{\mu}=(1-2m/r_{\text{obs}})^{-1/2}(1,0,0,0).$$
Then
$$\omega_{\text{obs}}=p_t u_{\text{obs}}^t=p_t (1-2m/r_{\text{obs}})^{-1/2}.$$
For the frequency at the source you get
$$\omega_{\text{source}}=p_t u_{\text{source}}^t=(1-2m/r_{\text{source}})^{-1/2},$$
i.e.,
$$\omega_{\text{obs}}=\sqrt{\frac{1-2m/r_{\text{source}}}{1-2m/r_{\text{obs}}}} \omega_{\text{source}},$$
which describes (for ##r_{\text{source}}<r_{\text{obs}}##) the gravitational redshift.
 
vanhees71 said:
In a static spacetime
Which FRW spacetime is not.
 

Similar threads

Replies
2
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 42 ·
2
Replies
42
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K