Does the use of Chern classes and other characteristic classes extend to the existence of embeddings? For example, it is known that ## S^n ## , the n-sphere does not embed in ## \mathbb R^n## or ## \mathbb R^m ## for ##m<n ## (I think this is a corollary of Borsuk Ulam). Can this be determined by Chern classes (or some other general theory, e.g., (co)homology, homotopy theory, etc.)? I think there are some results using the normal bundle of the embedded object, which must be trivial, so that the bundle sum of the embedded figure and its normal complement must be trivial in the ambient space. Are there anything other results?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Obstruction Theory and Embeddings

**Physics Forums | Science Articles, Homework Help, Discussion**