I Obtaining Transit Spectrum for Celestial Bodies Using JWST NIRSPEC

AI Thread Summary
The discussion focuses on the challenge of obtaining transit spectrum data for celestial bodies like Ceres, Enceladus, Ganymede, Io, and Titan using a specific GitHub package. The user is unfamiliar with the package and seeks guidance on how to navigate it effectively to retrieve the necessary data for comparison with Earth's transit spectrum. Participants are encouraged to share step-by-step instructions or alternative methods for collecting this data. Additionally, there is interest in other tools or platforms that may assist in this endeavor. The conversation highlights a collaborative effort to overcome technical hurdles in astrophysical research.
starryexplorer
Messages
1
Reaction score
0
TL;DR Summary
Seeking help with obtaining transit spectra for Ceres, Enceladus, Ganymede, Io, and Titan. Struggling with Github package usage. Any advice or alternative methods appreciated. Excited to compare with Earth's spectrum.
I've recently been tasked with obtaining transit spectrum data for some fascinating celestial bodies, including Ceres, Enceladus, Ganymede, Io, and Titan. The goal is to compare their transit spectra with that of Earth. However, I'm facing a bit of a challenge when it comes to using the Github package here: https://github.com/nespinoza/transitspectroscopy

To provide some context, I've received instructions to utilize the Github package to gather the transit spectrum data. However, I'm not very familiar with how to effectively use it for this purpose. Despite my best efforts, I haven't been able to navigate the package successfully to retrieve the transit spectrum data that I need.

If any of you have experience with the Github package or if you know of alternative methods to obtain transit spectrum data for these celestial bodies, I would greatly appreciate your guidance. Perhaps you can share some step-by-step instructions or valuable resources that could help me get started.

Moreover, if there are any other tools or platforms that you've found helpful for collecting transit spectrum data, I'd be open to exploring those options as well.

If it would help, here are the links to the files of the celestial objects that I'm supposed to compare their transit spectra against Earth's:
Io, Ceres, Titan, Enceladus, Ganymede1, Ganymede2
 
Astronomy news on Phys.org
starryexplorer said:
TL;DR Summary: Seeking help with obtaining transit spectra for Ceres, Enceladus, Ganymede, Io, and Titan. Struggling with Github package usage. Any advice or alternative methods appreciated. Excited to compare with Earth's spectrum.

I've recently been tasked with obtaining transit spectrum data for some fascinating celestial bodies, including Ceres, Enceladus, Ganymede, Io, and Titan. The goal is to compare their transit spectra with that of Earth. However, I'm facing a bit of a challenge when it comes to using the Github package here: https://github.com/nespinoza/transitspectroscopy

To provide some context, I've received instructions to utilize the Github package to gather the transit spectrum data. However, I'm not very familiar with how to effectively use it for this purpose. Despite my best efforts, I haven't been able to navigate the package successfully to retrieve the transit spectrum data that I need.

If any of you have experience with the Github package or if you know of alternative methods to obtain transit spectrum data for these celestial bodies, I would greatly appreciate your guidance. Perhaps you can share some step-by-step instructions or valuable resources that could help me get started.

Moreover, if there are any other tools or platforms that you've found helpful for collecting transit spectrum data, I'd be open to exploring those options as well.

If it would help, here are the links to the files of the celestial objects that I'm supposed to compare their transit spectra against Earth's:
Io, Ceres, Titan, Enceladus, Ganymede1, Ganymede2
A few of the guys have discussed this, I found this link

https://www.physicsforums.com/threa...tices-for-merging-branches-in-my-repo.995025/

Also @Andy Resnick may have a pointer?
 
I don't, sorry.... good luck!
 
  • Like
Likes pinball1970
@Devin-M has posted on Webb from what looked like a data site. Can you help?
 
Today at about 4:30 am I saw the conjunction of Venus and Jupiter, where they were about the width of the full moon, or one half degree apart. Did anyone else see it? Edit: The moon is 2,200 miles in diameter and at a distance of 240,000 miles. Thereby it subtends an angle in radians of 2,200/240,000=.01 (approximately). With pi radians being 180 degrees, one radian is 57.3 degrees, so that .01 radians is about .50 degrees (angle subtended by the moon). (.57 to be more exact, but with...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top