MHB Odd/Even Functions: Check Symmetry over Y Axis First

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    even Functions
AI Thread Summary
To determine if a function is odd or even, it is essential to first check for symmetry over the Y-axis. If a function is symmetric about the Y-axis, it satisfies the condition f(-x) = f(x), indicating it is even. Conversely, if f(-x) = -f(x), the function is odd. If a function does not exhibit Y-axis symmetry, further checks for odd or even characteristics may be unnecessary. Understanding these properties is crucial for analyzing function behavior effectively.
Yankel
Messages
390
Reaction score
0
Hello

I have a theoretical question. When I check if a function is odd or even, I usually check:

f(x)=f(-x) or f(-x)=-f(x)

someone told me today that before checking it, I first need to check the symmetry over the Y axis, and if the function is not symmetric over Y, there is no point of checking for odd or even.

Can someone explain this to me, and give a simple example of how to check for symmetry ?

thanks !
 
Mathematics news on Phys.org
If f(-x) = f(x), then it is symmetric about the y-axis, i.e., it is even. I think your method is best.
 
Yankel said:
Hello

I have a theoretical question. When I check if a function is odd or even, I usually check:

f(x)=f(-x) or f(-x)=-f(x)

someone told me today that before checking it, I first need to check the symmetry over the Y axis, and if the function is not symmetric over Y, there is no point of checking for odd or even.

Can someone explain this to me, and give a simple example of how to check for symmetry ?

thanks !
Think about the transformations to f(x) represented by f(-x) and -f(x) ...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top