MHB Oddity of $\left\lfloor{(2+\sqrt3)^n}\right\rfloor$ for All $n \in \mathbb{N}$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
Click For Summary
The discussion focuses on proving that the expression $\left\lfloor{(2+\sqrt3)^n}\right\rfloor$ is odd for all positive integers n. A key point is the use of binomial expansion, where the sum $(2+\sqrt3)^n + (2-\sqrt3)^n$ results in an even integer. Since $(2-\sqrt3)^n$ is less than 1, it implies that $\left\lfloor(2+\sqrt3)^n\right\rfloor$ must be odd. The mathematical reasoning hinges on the properties of even and odd integers in relation to the floor function. This establishes a clear pattern for the oddness of the expression across all natural numbers n.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
show that $\left\lfloor{(2+\sqrt3)^n}\right\rfloor$ is odd for every positive integer n
 
Mathematics news on Phys.org
My solution:

First, we find that the minimal polynomial for $2+\sqrt{3}$ is:

$$x^2-4x+1$$

And by inspecting initial conditions, we may then state:

$$\left(2+\sqrt{3}\right)^n=U_n+V_n\sqrt{3}$$

where both $U$ and $V$ are defined recursively by:

$$W_{n+1}=4W_{n}-W_{n-1}$$

and:

$$U_0=1,\,U_1=2$$

$$V_0=0,\,U_1=1$$

Now, we can see that $U_n$ and $V_n$ have opposing parities, and given:

$$\left\lfloor U_n+V_n\sqrt{3} \right\rfloor=U_n+V_n\left\lfloor \sqrt{3} \right\rfloor=U_n+V_n$$

We may then conclude that for all natural numbers $n$ that $$\left\lfloor \left(2+\sqrt{3}\right)^n \right\rfloor$$ must be odd, since the sum of an odd and an even natural number will always be odd.
 
A slight variation on the same idea.
[sp] $$(2+\sqrt3)^n + (2-\sqrt3)^n = 2\sum_{k=0}^{\lfloor k/2\rfloor}{n\choose 2k}2^{n-2k}3^k$$ (binomial expansion). The right side is clearly an even integer. On the left side, $(2-\sqrt3)^n < 1$, so it follows that $\left\lfloor(2+\sqrt3)^n\right\rfloor$ is odd.[/sp]
 
MarkFL said:
My solution:

First, we find that the minimal polynomial for $2+\sqrt{3}$ is:

$$x^2-4x+1$$

And by inspecting initial conditions, we may then state:

$$\left(2+\sqrt{3}\right)^n=U_n+V_n\sqrt{3}$$

where both $U$ and $V$ are defined recursively by:

$$W_{n+1}=4W_{n}-W_{n-1}$$

and:

$$U_0=1,\,U_1=2$$

$$V_0=0,\,U_1=1$$

Now, we can see that $U_n$ and $V_n$ have opposing parities, and given:

$$\left\lfloor U_n+V_n\sqrt{3} \right\rfloor=U_n+V_n\left\lfloor \sqrt{3} \right\rfloor=U_n+V_n$$

We may then conclude that for all natural numbers $n$ that $$\left\lfloor \left(2+\sqrt{3}\right)^n \right\rfloor$$ must be odd, since the sum of an odd and an even natural number will always be odd.
$\left\lfloor{V_n\sqrt{3}}\right\rfloor\ne V_n\left\lfloor{\sqrt3}\right\rfloor$
or am I mssing some thing
 
kaliprasad said:
$\left\lfloor{V_n\sqrt{3}}\right\rfloor\ne V_n\left\lfloor{\sqrt3}\right\rfloor$
or am I mssing some thing

Yes, my mistake, that's only true for $V_n\in\{0,1\}$. :D
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K