MHB Oddity of $\left\lfloor{(2+\sqrt3)^n}\right\rfloor$ for All $n \in \mathbb{N}$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
AI Thread Summary
The discussion focuses on proving that the expression $\left\lfloor{(2+\sqrt3)^n}\right\rfloor$ is odd for all positive integers n. A key point is the use of binomial expansion, where the sum $(2+\sqrt3)^n + (2-\sqrt3)^n$ results in an even integer. Since $(2-\sqrt3)^n$ is less than 1, it implies that $\left\lfloor(2+\sqrt3)^n\right\rfloor$ must be odd. The mathematical reasoning hinges on the properties of even and odd integers in relation to the floor function. This establishes a clear pattern for the oddness of the expression across all natural numbers n.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
show that $\left\lfloor{(2+\sqrt3)^n}\right\rfloor$ is odd for every positive integer n
 
Mathematics news on Phys.org
My solution:

First, we find that the minimal polynomial for $2+\sqrt{3}$ is:

$$x^2-4x+1$$

And by inspecting initial conditions, we may then state:

$$\left(2+\sqrt{3}\right)^n=U_n+V_n\sqrt{3}$$

where both $U$ and $V$ are defined recursively by:

$$W_{n+1}=4W_{n}-W_{n-1}$$

and:

$$U_0=1,\,U_1=2$$

$$V_0=0,\,U_1=1$$

Now, we can see that $U_n$ and $V_n$ have opposing parities, and given:

$$\left\lfloor U_n+V_n\sqrt{3} \right\rfloor=U_n+V_n\left\lfloor \sqrt{3} \right\rfloor=U_n+V_n$$

We may then conclude that for all natural numbers $n$ that $$\left\lfloor \left(2+\sqrt{3}\right)^n \right\rfloor$$ must be odd, since the sum of an odd and an even natural number will always be odd.
 
A slight variation on the same idea.
[sp] $$(2+\sqrt3)^n + (2-\sqrt3)^n = 2\sum_{k=0}^{\lfloor k/2\rfloor}{n\choose 2k}2^{n-2k}3^k$$ (binomial expansion). The right side is clearly an even integer. On the left side, $(2-\sqrt3)^n < 1$, so it follows that $\left\lfloor(2+\sqrt3)^n\right\rfloor$ is odd.[/sp]
 
MarkFL said:
My solution:

First, we find that the minimal polynomial for $2+\sqrt{3}$ is:

$$x^2-4x+1$$

And by inspecting initial conditions, we may then state:

$$\left(2+\sqrt{3}\right)^n=U_n+V_n\sqrt{3}$$

where both $U$ and $V$ are defined recursively by:

$$W_{n+1}=4W_{n}-W_{n-1}$$

and:

$$U_0=1,\,U_1=2$$

$$V_0=0,\,U_1=1$$

Now, we can see that $U_n$ and $V_n$ have opposing parities, and given:

$$\left\lfloor U_n+V_n\sqrt{3} \right\rfloor=U_n+V_n\left\lfloor \sqrt{3} \right\rfloor=U_n+V_n$$

We may then conclude that for all natural numbers $n$ that $$\left\lfloor \left(2+\sqrt{3}\right)^n \right\rfloor$$ must be odd, since the sum of an odd and an even natural number will always be odd.
$\left\lfloor{V_n\sqrt{3}}\right\rfloor\ne V_n\left\lfloor{\sqrt3}\right\rfloor$
or am I mssing some thing
 
kaliprasad said:
$\left\lfloor{V_n\sqrt{3}}\right\rfloor\ne V_n\left\lfloor{\sqrt3}\right\rfloor$
or am I mssing some thing

Yes, my mistake, that's only true for $V_n\in\{0,1\}$. :D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top