I Odds of getting pairs -- QM version

  • I
  • Thread starter Thread starter anuttarasammyak
  • Start date Start date
  • Tags Tags
    Qm
anuttarasammyak
Gold Member
Messages
2,922
Reaction score
1,515
As a spin out of How to calculate these odds?
https://www.physicsforums.com/threads/how-to-calculate-these-odds.1012014/
I have a question for quantum objects.
Question : An atom system has 16 different energy levels filled with 16 electron pairs of opposite spin direction. We pick up or measuring energy of 4 of them. Calculate odds for numbers of pairs of same energy we get in the observation results.

I assume:
If we observe spin z component of electrons together, the result is same as the thread.
If we do not observe it the number of cases are
2 pairs : ##\ _{16}C_2 = 120##
1 pair : ##\ _{16}C_1 \ _{15}C_2 = 1680 ##
0 pair : ##\ _{16}C_4 = 1820##
Total case number is ##120+1680+1820=3620##
So the probabilities are
P(2)=0.033 > 0.003 which is the result in the thread
P(1)=0.464 > 0.187
P(0)=0.503 < 0.810

I would like to know whether such a difference between classical and quantum cases takes place or not and if yes also this calculation is reasonable or not.
 
Physics news on Phys.org
Ha, I like it. subbed.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Back
Top