Undergrad On the approximate solution obtained through Euler's method

Click For Summary
SUMMARY

The forum discussion focuses on the approximate solutions obtained through Euler's method for ordinary differential equations (ODEs). It defines an ε-approximate solution and presents two key theorems regarding error estimates and conditions under which Euler's method yields such solutions. The discussion also addresses the implications of dropping certain assumptions in theorems and explores the concept of uniform convergence of the approximate solutions to the exact solutions as the step size approaches zero.

PREREQUISITES
  • Understanding of ordinary differential equations (ODEs)
  • Familiarity with Euler's method for numerical solutions
  • Knowledge of Lipschitz continuity and its implications
  • Concept of uniform convergence in mathematical analysis
NEXT STEPS
  • Study the proofs of theorems related to Euler's method and error estimates
  • Explore the implications of Lipschitz continuity in numerical analysis
  • Learn about uniform convergence and its applications in ODEs
  • Investigate alternative numerical methods for solving ODEs, such as Runge-Kutta methods
USEFUL FOR

Mathematicians, numerical analysts, and students studying ordinary differential equations who seek to understand numerical approximation methods and their convergence properties.

psie
Messages
315
Reaction score
40
TL;DR
I'm reading about Euler's method to construct approximate solutions to ODEs in Ordinary Differential Equations by Andersson and Böiers. I have questions about properties of the approximate solution.
This is a bit of a longer post. I have tried to be as brief as possible while still being self-contained. My questions probably do not have much to do with ODEs, but this is the context in which they arose. Grateful for any help.

In what follows ##|\cdot|## denotes either the absolute value of a scalar or the Euclidean norm of a vector (denoted in bold). First a definition of what it means to be an approximate solution:
Definition 1. Let ##I## be an interval on the real axis, and ##\Omega## an open set in ##\mathbf R\times\mathbf{R}^n##. Assume that the function ##\pmb{f}:\Omega\to\mathbf{R}^n## is continuous. A continuous function ##\pmb{x}(t),\ t\in I##, is called an ##\varepsilon##-approximate solution of the system ##\pmb{x}'=\pmb{f}(t,\pmb{x})## if ##(t,\pmb{x})\in\Omega## when ##t\in I## and $$\left|\pmb{x}(t'')-\pmb{x}(t')-\int_{t'}^{t''} \pmb{f}(s,\pmb{x}(s))ds\right|\leq \varepsilon|t''-t'|\quad \text{when } t',t''\in I.$$
Next, a theorem (for the sake of brevity, without proof) on an error estimate on the approximate solution:
Theorem 1. Assume that ##\pmb{f}(t,\pmb{x})## is continuous in ##\Omega\subseteq \mathbf{R}\times\mathbf{R}^n## and satisfies the Lipschitz condition $$|\pmb{f}(t,\pmb{x})-\pmb{f}(t,\pmb{y})|\leq L|\pmb{x}-\pmb{y}|, \quad (t,\pmb{x}),(t,\pmb{y})\in\Omega.$$ Let ##\pmb{\tilde{x}}(t)## be an ##\varepsilon##-approximate and ##\pmb{x}(t)## an exact solution of ##\pmb{x}'=\pmb{f}(t,\pmb{x})## in ##\Omega## when ##t\in I##. For an arbitrary point ##t_0## in ##I## we then have $$|\pmb{\tilde{x}}(t)-\pmb{x}|\leq |\pmb{\tilde{x}}(t_0)-\pmb{x}(t_0)|e^{L|t-t_0|}+\frac{\varepsilon}{L}(e^{L|t-t_0|}-1),\quad t\in I.$$
The Euler's method works as follows. Consider the equation ##x'=f(t,x)## and consider an initial value ##(t_0,x(t_0))##. We know the slope of the tangent line through ##(t_0,x(t_0))##. Follow this tangent a bit to the right, to ##t=t_1=t_0+\delta## and repeat the procedure for the point ##(t_1,x(t_1))##. This way, one gets a broken curve of straight line segments resembling the solution.

To make the definition of the broken curve precise, consider the system ##\pmb{x}'=\pmb{f}(t,\pmb{x})## and an initial value ##(t_0,\pmb{x}_0)##. Make a division of the interval ##[t_0,t_0+a]## in equally long subintervals: ##t_0<t_1<\ldots<t_m=t_0+a##, and put ##\delta=t_j-t_{j-1}##. Then define the function ##\pmb{x}_{\delta}## recursively at the step points ##t_j## by \begin{align}
&\pmb{x}_{\delta}(t_0)=\pmb{x}_0, \nonumber \\
&\pmb{x}_{\delta}(t_{j+1})=\pmb{x}_{\delta}(t_j)+(t_{j+1}-t_j)\pmb{f}(t_j,\pmb{x}_{\delta}(t_j)),\quad j=0,1,\ldots,m-1. \tag1
\end{align}
Between the step points the curve of ##\pmb{x}_{\delta}## is supposed to be a straight line, so $$\pmb{x}_{\delta}(t)=\pmb{x}_{\delta}(t_j)+(t-t_j)\pmb{f}(t_j,\pmb{x}_{\delta}(t_j)),\quad t_j\leq t\leq t_{j+1}.\tag2$$ The function ##\pmb{x}_{\delta}## is defined correspondingly in the interval ##[t_0-a,t_0]##.

The following theorem shows ##\pmb{x}_{\delta}## is an ##\varepsilon##-approximate solution to ##\pmb{x}'=\pmb{f}(t,\pmb{x})## under certain conditions on ##\pmb{f}##.
Theorem 2. [Let ##B,L## and ##C## be positive constants.] Assume that
  1. the function ##\pmb{f}(t,\pmb{x})## is continuous in ##\Omega\subseteq\mathbf{R}\times\mathbf{R}^n##, that ##|\pmb{f}(t,\pmb{x})|\leq B## in ##\Omega##, and that ##a## is so small that ##\Lambda(a)\subseteq\Omega##, where ##\Lambda(a)## denotes the double cone $$\Lambda(a)=\{(t,\pmb{x})\in \mathbf{R}\times\mathbf{R}^n;|t-t_0|\leq a, \ |\pmb{x}-\pmb{x}_0|\leq B|t-t_0|\},$$
  2. ##|\pmb{f}(t,\pmb{x})-\pmb{f}(t,\pmb{y})|\leq L|\pmb{x}-\pmb{y}| \qquad \ \ \ (t,\pmb{x}),(t,\pmb{y})\in\Omega##,
  3. ##|\pmb{f}(t',\pmb{x})-\pmb{f}(t'',\pmb{x})|\leq C|t'-t''| \quad (t',\pmb{x}),(t'',\pmb{x})\in\Omega##
Then ##\pmb{x}_{\delta}## is an ##\varepsilon##-approximate solution to the system ##\pmb{x}'=\pmb{f}(t,\pmb{x})## in the interval ##[t_0-a,t_0+a]##, with ##\varepsilon=\delta(C+LB)##.

Proof. All line segments in the definition of ##\pmb{x}_{\delta}## have a slope at most ##B##. Therefor ##(t,\pmb{x}_{\delta}(t))\in\Lambda(a)## when ##t\in[t_0-a,t_0+a]##. Moreover, if ##|t'-t''|\le\delta## then \begin{align} |\pmb{f}(t',\pmb{x}_{\delta}(t'))-\pmb{f}(t'',\pmb{x}_{\delta}(t''))|&\leq |\pmb{f}(t',\pmb{x}_{\delta}(t'))-\pmb{f}(t'',\pmb{x}_{\delta}(t'))| \nonumber \\ &+|\pmb{f}(t'',\pmb{x}_{\delta}(t'))-\pmb{f}(t'',\pmb{x}_{\delta}(t''))| \nonumber \\ &\leq C|t'-t''|+L|\pmb{x}_{\delta}(t')-\pmb{x}_{\delta}(t'')| \nonumber \\ &\leq C|t'-t''|+LB|t'-t''| \nonumber \\ &\leq \delta(C+LB).\tag3 \end{align}
[The first inequality is the triangle inequality, the second follows from 2. and 3. in the assumptions and the third by the fact that each line segments of ##\pmb{x}_{\delta}## have a slope at most ##B##, so ##|\pmb{x}_{\delta}(t')-\pmb{x}_{\delta}(t'')|\leq B|t'-t''|##.] We must prove that $$\left|\pmb{x}_{\delta}(t'')-\pmb{x}_{\delta}(t')-\int_{t'}^{t''} \pmb{f}(s,\pmb{x}_{\delta}(s))ds\right|\leq \delta(C+LB)|t'-t''|.\tag4$$
If ##t'## and ##t''## belong to the same subinterval ##[t_j,t_{j+1}]## then [from ##(2)##] $$\pmb{x}_{\delta}(t'')-\pmb{x}_{\delta}(t')=(t''-t')\pmb{f}(t_j,\pmb{x}_{\delta}(t_j))=\int_{t'}^{t''} \pmb{f}(t_j,\pmb{x}_{\delta}(t_j))ds,$$ and ##(4)## follows from ##(3)##. (In particular, ##(4)## is valid when ##t'=t_j## and ##t''=t_{j+1}##). If ##t'## and ##t''## belong to different subintervals then use ##(4)## on each one of the intervals ##[t',t_{j+1}],[t_{j+1},t_{j+2}],\ldots,[t_{k-1},t_k],[t_k,t'']## and add the results.
Now comes the part I have some questions about. The authors claim that if we drop assumptions 1. and 2. in theorem 2, it is still possible to show that there is a number ##\varepsilon(\delta)##, tending to zero as ##\delta\to 0##, such that ##\pmb{x}_{\delta}## is an ##\varepsilon(\delta)##-approximate solution in the interval ##I(a)=[t_0-a,t_0+a]##. They write:
We know that ##(t,\pmb{x}_{\delta}(t))\in\Lambda(a)## when ##t\in I(a)## and that $$|\pmb{x}_{\delta}(t')-\pmb{x}_{\delta}(t'')|\leq B|t'-t''|\quad t',t''\in I(a).\tag5$$ Put $$\varepsilon(\delta)=\sup\limits_{|t'-t''|\leq\delta}|\pmb{f}(t',\pmb{x}_{\delta}(t'))-\pmb{f}(t'',\pmb{x}_{\delta}(t''))|.$$ The computations in the proof of theorem 2 show that ##\pmb{x}_{\delta}## is an ##\varepsilon(\delta)##-approximate solution. Furthermore, ##\pmb{f}## is uniformly continuous on ##\Lambda(a)##. From ##(5)## it accordingly follows that $$\lim_{\delta\to0}\varepsilon(\delta)=0.\tag6$$
Question 1: I simply do not understand how ##(6)## follow from ##(5)##. How does it?

Question 2: The authors go on to claim that when the IVP ##\pmb{x}'=\pmb{f}(t,\pmb{x}), \pmb{x}(t_0)=\pmb{x}_0## has a solution ##\pmb{x}(t)##, then it follows from ##(6)## and theorem 1, that ##\pmb{x}_{\delta}## converges uniformly to ##\pmb{x}## as ##\delta\to 0##. The definition of uniform convergence I'm used to is ##\lVert f_n-f\rVert\to 0## as ##n\to\infty##, where ##\lVert\cdot\rVert## denotes the sup-norm, but here they are claiming that the sup-norm should tend to ##0## as ##\delta\to 0##. This makes me wonder; what is ##\pmb{x}_{\delta}##? Is it a sequence? If not, what definition of uniform convergence are the authors using?

EDIT: The last quoted passage is just prior to presenting Peano's existence theorem. They note that:
If you only assume that ##\pmb f## is continuous, you can not use [Picard-Lindelöf's theorem]. In fact, you can not even be certain that ##\pmb{x}_{\delta}(t)## converges when ##\delta\to 0##. But what you can prove is that there is a sequence ##\delta_p##, tending to zero as ##p\to\infty##, such that the functions ##\pmb {x}_{\delta_p}(t)## converge uniformly on ##I(a)##.
 
Last edited:
Physics news on Phys.org
Question 2: The authors go on to claim that when the IVP ##\pmb{x}'=\pmb{f}(t,\pmb{x}), \pmb{x}(t_0)=\pmb{x}_0## has a solution ##\pmb{x}(t)##, then it follows from ##(6)## and theorem 1, that ##\pmb{x}_{\delta}## converges uniformly to ##\pmb{x}## as ##\delta\to 0##. The definition of uniform convergence I'm used to is ##\lVert f_n-f\rVert\to 0## as ##n\to\infty##, where ##\lVert\cdot\rVert## denotes the sup-norm, but here they are claiming that the sup-norm should tend to ##0## as ##\delta\to 0##. This makes me wonder; what is ##\pmb{x}_{\delta}##? Is it a sequence? If not, what definition of uniform convergence are the authors using?

Let X be a compact space and f_\alpha : X \to \mathbb{R}^n a family of functions defined for \alpha \in U \subset \mathbb{R}. Then f_\alpha \to f uniformly on X as \alpha \to \alpha_0 \in \bar{U} if and only if for every \epsilon &gt; 0 there exists \delta &gt; 0 such that for all \alpha \in U, |\alpha - \alpha_0| &lt; \delta \quad \Rightarrow\quad<br /> \sup_{x \in X} \|f_\alpha(x) - f(x)\| &lt; \epsilon. Note that this has the same relation to the defintiion of uniform convergence of a sequence of functions as the definition of the limit of a function at a point has to the definition of the limit of a sequence.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K