- 1,260
- 1,062
Usually, the theory of the Moore-Penrose inverse looks like some profound material, but it is actually a combination of several standard linear algebra theorems, provided the definition is introduced properly. Such things happen from time to time in peripheral or special fields.
Let $$A:X\to Y,\quad X=\mathbb{R}^m,\quad Y=\mathbb{R}^n$$ be a linear operator and take a subspace ##F\subset X## such that
$$X=F\oplus \ker A.$$
Let ##P:X\to F## be the projection along the subspace ##\ker A##.
Theorem 1. There exists a unique operator ##B:F\to A(X)## such that ##A=BP.## The operator ##B## is an isomorphism.
Equip the spaces ##X## and ##Y## with inner products ##(\cdot,\cdot)_X## and ##(\cdot,\cdot)_Y## respectively.
Recall that
$$A^*:Y\to X,\quad (Ax,y)_Y=(x,A^*y)_X.$$
Theorem 2. The following orthogonal decompositions hold:
$$X=\ker A\oplus A^*(Y),\quad \ker A\perp A^*(Y);\quad Y=\ker A^*\oplus A(X),\quad \ker A^*\perp A(X).$$
Let ##P_x:X\to A^*(Y),\quad P_y:Y\to A(X)## be the corresponding orthogonal projections.
From Theorem 1 we know that there is a unique isomorphism ##\tilde A: A^*(Y)\to A(X)## such that ##A=\tilde AP_x.##
Definition. We shall call the operator
$$A^+=\tilde A^{-1}P_y:Y\to X$$the MP-inverse operator.
All the standard properties of this operator are easily checked. The main of them are
$$AA^+=P_y,\quad A^+A=P_x.$$
The Hilbert space generalization is evident as well.
Let $$A:X\to Y,\quad X=\mathbb{R}^m,\quad Y=\mathbb{R}^n$$ be a linear operator and take a subspace ##F\subset X## such that
$$X=F\oplus \ker A.$$
Let ##P:X\to F## be the projection along the subspace ##\ker A##.
Theorem 1. There exists a unique operator ##B:F\to A(X)## such that ##A=BP.## The operator ##B## is an isomorphism.
Equip the spaces ##X## and ##Y## with inner products ##(\cdot,\cdot)_X## and ##(\cdot,\cdot)_Y## respectively.
Recall that
$$A^*:Y\to X,\quad (Ax,y)_Y=(x,A^*y)_X.$$
Theorem 2. The following orthogonal decompositions hold:
$$X=\ker A\oplus A^*(Y),\quad \ker A\perp A^*(Y);\quad Y=\ker A^*\oplus A(X),\quad \ker A^*\perp A(X).$$
Let ##P_x:X\to A^*(Y),\quad P_y:Y\to A(X)## be the corresponding orthogonal projections.
From Theorem 1 we know that there is a unique isomorphism ##\tilde A: A^*(Y)\to A(X)## such that ##A=\tilde AP_x.##
Definition. We shall call the operator
$$A^+=\tilde A^{-1}P_y:Y\to X$$the MP-inverse operator.
All the standard properties of this operator are easily checked. The main of them are
$$AA^+=P_y,\quad A^+A=P_x.$$
The Hilbert space generalization is evident as well.
Last edited: