Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I On uniqueness of density matrix description as mixed state

  1. Jan 10, 2017 #1

    stevendaryl

    User Avatar
    Staff Emeritus
    Science Advisor

    If you have a density matrix [itex]\rho[/itex], there is a basis [itex]|\psi_j\rangle[/itex] such that
    [itex]\rho[/itex] is diagonal in that basis. What are the conditions on [itex]\rho[/itex] such that the basis that diagonalizes it is unique?

    It's easy enough to work out the answer in the simplest case, of a two-dimensional basis: Then [itex]\rho[/itex] can be represented as a 2x2 matrix. It will have two eigenvalues, [itex]p[/itex] and [itex]q[/itex]. If [itex]p = q[/itex], then [itex]\rho[/itex] is diagonal in every basis. If [itex]p \neq q[/itex], then there is a unique basis (up to permutations of elements and overall phase factor) that diagonalizes [itex]\rho[/itex].

    Is there some result that is similar for bases of arbitrary dimension? What's the condition on [itex]\rho[/itex] such that there is a unique way to diagonalize it?
     
  2. jcsd
  3. Jan 10, 2017 #2

    A. Neumaier

    User Avatar
    Science Advisor
    2016 Award

    The basis is never unique as one can always change the length or the phase of the basis vectors. The necessary and sufficient condition for this being the only freedom is that the matrix has no multiple eigenvalues.
     
  4. Jan 10, 2017 #3

    zonde

    User Avatar
    Gold Member

    Aren't entries of density matrix real valued? Then there is no phase.
    And what do you mean by changing length of basis vectors? If intensity in one output of PBS is twice the intensity of other output then it is so. You can not change that by mathematical manipulations.
     
  5. Jan 10, 2017 #4

    A. Neumaier

    User Avatar
    Science Advisor
    2016 Award

    No. Any positive semidefinite Hermitian matrix of trace 1 qualifies as a density matrix.

    Changing the length of a basis vector preserves linear independence, hence we get another basis. This is a mathematical fact independent of physics. (Maybe stevendaryl intended to have an orthonormal basis - where lengths are fixed at 1 - but he didn't say so.)
     
  6. Jan 10, 2017 #5

    zonde

    User Avatar
    Gold Member

    Okay. So let me restate my question:
    Aren't entries of diagonal density matrix real valued?
    If a mathematical fact disagrees with empirical fact then this particular mathematical fact does not describe particular physical situation and is irrelevant.
    Does it preserve condition that the trace is fixed at 1?
     
  7. Jan 11, 2017 #6

    A. Neumaier

    User Avatar
    Science Advisor
    2016 Award

    Yes, but they do not contain the phase information.
    The trace is a basis-independent concept.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: On uniqueness of density matrix description as mixed state
Loading...