MHB Open Sets in R^n .... Duistermaat and Kolk, Lemma 1.2.5 ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Sets
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Multidimensional Real Analysis I: Differentiation by J. J. Duistermaat and J. A. C. Kolk ...

I am focused on Chapter 1: Continuity ... ...

I need help with an aspect of Lemma 1.2.5 ...

Duistermaat and Kolk"s Lemma 1.2.5 reads as follows:View attachment 9014In the above proof by Duistermaat and Kolk we read the following:

" ... ... Assertion (i) follows from Definition 1.2.2 ... ..."I have tried to demonstrate a rigorous proof of Assertion (i) but have not been happy it is fully rigorous ...Can someone please demonstrate a fully rigorous proof of Assertion (i) ...


Help will be appreciated ...

Peter ========================================================================================It may help readers of the above post to have access to the start of Section 1.2: Open and Closed Sets ... which includes Definition 1.2.2 referred to above ... so I am providing aces to that text ... as follows ... View attachment 9015
View attachment 9016
Hope that helps ... ...

Peter
 

Attachments

  • D&K - Lemma 1.2.5 ... .png
    D&K - Lemma 1.2.5 ... .png
    11.9 KB · Views: 119
  • D&K - 1 - Start of Section 1.2 ... Open and Closed Sets ... .png
    D&K - 1 - Start of Section 1.2 ... Open and Closed Sets ... .png
    5.8 KB · Views: 130
  • D&K - 2 - Start of Section 1.2 ... Open and Closed Sets ... ...Part 2.png
    D&K - 2 - Start of Section 1.2 ... Open and Closed Sets ... ...Part 2.png
    32.3 KB · Views: 131
Physics news on Phys.org
Suppose that $U = \bigcup_{s\in S}U_s$ is a union of open sets $U_s$. If $x\in U$ then by definition $x$ must belong to one of the sets $U_s$. Since $U_s$ is open, there exists $\delta>0$ with $B(x,\delta)\subseteq U_s$. Then $x\in B(x,\delta)\subseteq U_s \subseteq U$. Thus every point $x$ in $U$ is in the interior of $U$. So $U$ is open.
 
Opalg said:
Suppose that $U = \bigcup_{s\in S}U_s$ is a union of open sets $U_s$. If $x\in U$ then by definition $x$ must belong to one of the sets $U_s$. Since $U_s$ is open, there exists $\delta>0$ with $B(x,\delta)\subseteq U_s$. Then $x\in B(x,\delta)\subseteq U_s \subseteq U$. Thus every point $x$ in $U$ is in the interior of $U$. So $U$ is open.

Thanks for your help, Opalg ...

Peter
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top