Opening a door between a vacuum and atmosphere

AI Thread Summary
The discussion focuses on the challenges of maintaining a closed system in an incinerator during ash removal, where opening a single door leads to significant heat loss and pressure fluctuations. A proposal for a two-door system aims to minimize these issues by allowing controlled air ingress, thus maintaining furnace temperature and pressure more effectively. Suggestions include using a butterfly valve for the upper door and a self-sealing flap for the lower door to reduce the volume of the intermediate chamber. The conversation also touches on the potential for a heat exchanger to further mitigate energy loss during ash removal cycles. Overall, the goal is to enhance safety and efficiency in the ash discharge process.
DanielG1
Messages
2
Reaction score
0
TL;DR Summary
How do I determine the air flow between a vacuum and atmosphere when a door is opened?
I work as part of the engineering team running an incinerator. When the ash is removed from our furnace, it creates an open system between the furnace (which is close to being a vacuum) and the atmosphere. For many reasons, this is not ideal. We are looking to add a second door to this ash discharge, so that the system can remain fully closed. In order to justify the expenditure, I am required to give a value for the heat lost every time the ash discharge door is opened, and then scale this for the amount of energy lost annually, and then the financial impact. I am not sure where to start with these calculations as I never covered something like this during my degree, nor have I encountered this problem during my career.

Any help or advice would be greatly appreciated.
 
Engineering news on Phys.org
Welcome to PF.

What mechanism is employed to remove the ash?

Now, with one door, the furnace will rise to atmospheric pressure for the entire period that the door is opened. What effect does that have on heat loss ?

Opening a door between atmospheric pressure and near vacuum will result in an explosive decompression of the furnace, a bit like an aircraft skin failure.

With two doors, the furnace will draw in only a fixed volume of air, from between the two doors, when the inner door is opened. If the volume between the doors is small compared with the furnace volume, then the furnace will not rise all the way to atmospheric pressure when the inner door is opened.
 
The ash collects on top of a simple drop door which is released to allow the ash to enter a skip, before the door is closed using a set of hydraulic rams.

The heat loss issue is connected to the ingress of air at atmospheric temperature that would take place with the door open, which would in turn lower the temperature in the furnace.

Your comment on the proposed two-door design is exactly what we are hoping to achieve. With a second door the furnace temperature and pressure should not vary too much during a de-ash, which would be both safer and more efficient.
 
I think you should consider a butterfly valve as the top door. That would be balanced and so would not need a great hydraulic pressure to remain closed during operation. The door would invert quickly, only once per cycle. The ash side could be brushed after inversion, with the ash falling to, or through, the bottom door.

The pressure of the chamber between the doors could be gently equilibrated before operation of either door. That would prevent a sudden rush of air that could blow ash back into the furnace.

The bottom door could be a simple flap, in the shape of half a cylinder that, when closed, comes close to the upper butterfly. That door would be a self-sealed plug, held by the pressure difference, while the butterfly was inverting. That would minimise the volume of the intermediate chamber, and minimise the energy needed to equilibrate the pressure.

Is the base of the furnace circular or rectangular? That will decide the shape of the butterfly, circular or rectangular, and the shape of the lower door, hemispherical or semi-cylindrical.

If the ash removal process occurred more often, a heat exchanger could minimise energy loss during the two pressure equilibration phases of each cycle.

Maybe it is time to search the literature on current technology, time to stop thinking outside the firebox.
 
  • Like
Likes Tom.G and Lnewqban
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Carburetor CFM A Holley Carb rated at 500 cfm 2 barrel carb has venturi diameter of 1.3/8". There are 2 barrel carbs with 600 cfm and have 1.45 diameter venturi. Looking at the area the 1.378 bore has 5.9 sq. Inch area. The 1.45 dia. has 6.6 sq. inch. 5.9 - 6.6 = 0.70 sq. inch difference. Keeping the 500 cfm carb in place, if I can introduce 0.7 sq inch more area in the intake manifold, will I have the same potential horsepower as a 600 cfm carb provide? Assume I can change jetting to...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly

Similar threads

Back
Top