MHB Operator norm .... Field, Theorem 9.2.9 ....

Click For Summary
The discussion centers on understanding Theorem 9.2.9 (3) from Michael Field's "Essential Real Analysis," specifically the inequality involving the supremum of linear maps in normed vector spaces. Participants clarify that the inequality $$ \text{sup}_{ \| u \| = 1} ( \| Au \| + \| Bu \| ) \le \text{sup}_{ \| u \| = 1} ( \| Au \| ) +\text{sup}_{ \| u \| = 1} ( \| Bu \| ) $$ holds true due to the properties of supremum and norms. It is established that for any unit vector \( u \), the individual norms of \( Au \) and \( Bu \) are bounded by their respective suprema. The conversation confirms that the inequality is valid and provides a logical progression to arrive at this conclusion. Understanding these properties is essential for grasping the theorem's implications in differential calculus.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Michael Field's book: "Essential Real Analysis" ... ...

I am currently reading Chapter 9: Differential Calculus in $$\mathbb{R}^m$$ and am specifically focused on Section 9.2.1 Normed Vector Spaces of Linear Maps ...

I need some help in fully understanding Theorem 9.2.9 (3) ... Theorem 9.2.9 (3) reads as follows:
View attachment 9375
View attachment 9376

In the proof of Theorem 9.2.9 (3) Field asserts the following:

$$ \text{sup}_{ \| u \| = 1} ( \| Au \| + \| Bu \| ) \le \text{sup}_{ \| u \| = 1} ( \| Au \| ) +\text{sup}_{ \| u \| = 1} ( \| Bu \| ) $$
Can someone please explain why this is true ... surely the above is a strict equality ...
Help will be much appreciated ...

Peter
 

Attachments

  • Field - 1 - Theorem 9.2.9 ... ... PART 1 ... .png
    Field - 1 - Theorem 9.2.9 ... ... PART 1 ... .png
    14 KB · Views: 177
  • Field - 2 - Theorem 9.2.9 ... ... PART 2 ... .png
    Field - 2 - Theorem 9.2.9 ... ... PART 2 ... .png
    5.5 KB · Views: 151
Physics news on Phys.org
Hi Peter,

Peter said:
In the proof of Theorem 9.2.9 (3) Field asserts the following:

$$ \text{sup}_{ \| u \| = 1} ( \| Au \| + \| Bu \| ) \le \text{sup}_{ \| u \| = 1} ( \| Au \| ) +\text{sup}_{ \| u \| = 1} ( \| Bu \| ) $$

Can someone please explain why this is true ... surely the above is a strict equality ...

Here is a hint: Use the fact that $\|Au\|\leq \sup_{\|u\|=1}\|Au\|$ and $\|Bu\|\leq \sup_{\|u\|=1}\|Bu\|$ for all $\|u\|=1.$ Can you proceed from here?
 
GJA said:
Hi Peter,
Here is a hint: Use the fact that $\|Au\|\leq \sup_{\|u\|=1}\|Au\|$ and $\|Bu\|\leq \sup_{\|u\|=1}\|Bu\|$ for all $\|u\|=1.$ Can you proceed from here?
Hi GJA ...

I think that a way to proceed is as follows:

Since $\|Au\|\leq \sup_{\|u\|=1}\|Au\|$ and $\|Bu\|\leq \sup_{\|u\|=1}\|Bu\|$ for all $\|u\|=1.$

we have ... ...

$$\|Au\| + \|Bu\| \leq \sup_{\|u\|=1}\|Au\| + \sup_{\|u\|=1} \|Bu\| $$ for all $\|u\|=1.$ Therefore ...$$\sup_{\|u\|=1} ( \|Au\| + \|Bu\| ) \leq \sup_{\|u\|=1} \|Au\| + \sup_{\|u\|=1}\|Bu\|$$... since $$\sup_{\|u\|=1} ( \|Au\| + \|Bu\| ) = \text{ max }_{ \| u \| = 1 } ( \|Au\| + \|Bu\| )$$
Is that correct?Peter
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K