[Optics] Questions on the Stokes shift

AI Thread Summary
Stokes shift refers to the wavelength difference between the excitation and emission spectra of the same electronic transition. A large Stokes shift indicates greater energy loss, which can negatively impact energy efficiency, while a smaller shift is generally preferred. However, a larger Stokes shift can enhance the signal-to-noise ratio (SNR), making it easier to detect fluorescence emissions. The discussion raises questions about the practical implications of Stokes shift and its relationship to SNR. Understanding these dynamics is crucial for optimizing fluorescence detection in various applications.
rinalai
Messages
19
Reaction score
5
Homework Statement
Is it better to have a large or small Stokes shift, from a practical point of view?
Relevant Equations
NA
Here is my answer to this question:

Stokes shift is the difference in wavelength between positions of the band maxima of the excitation and emission spectra of the same electronic transition.
When Stokes shift is large, it means there is more energy loss, which is not favorable regarding energy efficiency. Thus, it is usually better to have a small Stokes shift.
On the other hand, with a larger Stokes shift, meaning that there is a greater wavelength difference between the excitation and emission light, resulting in a higher signal-to-noise ratio(SNR), which makes it easier to identify the fluorescence emission from the particles we are observing.

Are these statements correct?
Any comments and suggestions will be appreciated.
 
Physics news on Phys.org
I have no idea what it means to be "practical". Practical in what sense?

rinalai said:
On the other hand, with a larger Stokes shift, meaning that there is a greater wavelength difference between the excitation and emission light, resulting in a higher signal-to-noise ratio(SNR), which makes it easier to identify the fluorescence emission from the particles we are observing.
Why do you think that larger Stokes shift lead to higher SNR?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top