MHB Optimisation Problem (Global extreme points)

AI Thread Summary
The discussion revolves around finding the global extreme point of the function f(x) = e^(x-1) - x. The derivative f'(x) is set to zero, leading to the conclusion that x = 1 is a critical point, which is confirmed as a minimum by the second derivative test. The confusion arises from interpreting the term "minimizes f(x)," where it is clarified that this refers to the x-value at which the minimum occurs, not the minimum value itself. The minimum value of the function at this point is f(1) = -1. Thus, x = 1 is the correct point that minimizes the function.
Foosey96
Messages
1
Reaction score
0
Hi there everyone, wonder if anyone can help as I'm a bit confused.
Ive been asked to find the global extreme point of f(x)=e^(x-1) - x.
I have checked my answer against the solution and am correct and my working is as follows:
f'(x) = e^(x-1) - 1 = 0. Therefore (x-1)=ln1 (which = 0) therefore x = 1.
f''(x) = e(x-1). sub in x=1 and f''(x) = 1 which is > 0 hence the extreme point is a minimum.
The solution however then goes on to conclude that x*=1 minimizes f(x)
This is what I am confused by as I thought minimum points by their nature were the y-values not the x values and hence x* should actually be e^(1-1) - 1 = 0 and so x*=0 minimizes f(x)??
Thanks for any help you can give that final conclusion has just thrown me off. Thanks everyone!
 
Mathematics news on Phys.org
Foosey96 said:
Hi there everyone, wonder if anyone can help as I'm a bit confused.
Ive been asked to find the global extreme point of f(x)=e^(x-1) - x.
I have checked my answer against the solution and am correct and my working is as follows:
f'(x) = e^(x-1) - 1 = 0. Therefore (x-1)=ln1 (which = 0) therefore x = 1.
f''(x) = e(x-1). sub in x=1 and f''(x) = 1 which is > 0 hence the extreme point is a minimum.
The solution however then goes on to conclude that x*=1 minimizes f(x)
This is what I am confused by as I thought minimum points by their nature were the y-values not the x values and hence x* should actually be e^(1-1) - 1 = 0 and so x*=0 minimizes f(x)??
Thanks for any help you can give that final conclusion has just thrown me off. Thanks everyone!

What they said is correct. To say that x = 1 minimises f(x) is to say that when x = 1 IN the function, then the function value will be at its minimum.

Here the minimum value is f(1) = e^(1-1) - 1 = -1.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top