MHB Optimisation Problem (Global extreme points)

Click For Summary
The discussion revolves around finding the global extreme point of the function f(x) = e^(x-1) - x. The derivative f'(x) is set to zero, leading to the conclusion that x = 1 is a critical point, which is confirmed as a minimum by the second derivative test. The confusion arises from interpreting the term "minimizes f(x)," where it is clarified that this refers to the x-value at which the minimum occurs, not the minimum value itself. The minimum value of the function at this point is f(1) = -1. Thus, x = 1 is the correct point that minimizes the function.
Foosey96
Messages
1
Reaction score
0
Hi there everyone, wonder if anyone can help as I'm a bit confused.
Ive been asked to find the global extreme point of f(x)=e^(x-1) - x.
I have checked my answer against the solution and am correct and my working is as follows:
f'(x) = e^(x-1) - 1 = 0. Therefore (x-1)=ln1 (which = 0) therefore x = 1.
f''(x) = e(x-1). sub in x=1 and f''(x) = 1 which is > 0 hence the extreme point is a minimum.
The solution however then goes on to conclude that x*=1 minimizes f(x)
This is what I am confused by as I thought minimum points by their nature were the y-values not the x values and hence x* should actually be e^(1-1) - 1 = 0 and so x*=0 minimizes f(x)??
Thanks for any help you can give that final conclusion has just thrown me off. Thanks everyone!
 
Mathematics news on Phys.org
Foosey96 said:
Hi there everyone, wonder if anyone can help as I'm a bit confused.
Ive been asked to find the global extreme point of f(x)=e^(x-1) - x.
I have checked my answer against the solution and am correct and my working is as follows:
f'(x) = e^(x-1) - 1 = 0. Therefore (x-1)=ln1 (which = 0) therefore x = 1.
f''(x) = e(x-1). sub in x=1 and f''(x) = 1 which is > 0 hence the extreme point is a minimum.
The solution however then goes on to conclude that x*=1 minimizes f(x)
This is what I am confused by as I thought minimum points by their nature were the y-values not the x values and hence x* should actually be e^(1-1) - 1 = 0 and so x*=0 minimizes f(x)??
Thanks for any help you can give that final conclusion has just thrown me off. Thanks everyone!

What they said is correct. To say that x = 1 minimises f(x) is to say that when x = 1 IN the function, then the function value will be at its minimum.

Here the minimum value is f(1) = e^(1-1) - 1 = -1.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K