Please refer to the diagram:
View attachment 1104
We may state:
$$\alpha+\theta+\beta=\pi$$
$$\theta=\pi-(\alpha+\beta)$$
Now, we see that:
$$\tan(\alpha)=\frac{h_1}{x}$$
$$\tan(\beta)=\frac{h_2}{w-x}$$
Hence:
$$\theta=\pi-\left(\tan^{-1}\left(\frac{h_1}{x} \right)+\tan^{-1}\left(\frac{h_2}{w-x} \right) \right)$$
Differentiating with respect to $x$, we obtain:
$$\frac{d\theta}{dx}=-\frac{1}{1+\left(\frac{h_1}{x} \right)^2}\left(-\frac{h_1}{x^2} \right)-\frac{1}{1+\left(\frac{h_2}{w-x} \right)^2}\left(\frac{h_2}{(w-x)^2} \right)=$$
$$\frac{h_1}{x^2+h_1^2}-\frac{h_2}{(w-x)^2+h_2^2}=\frac{h_1\left((w-x)^2+h_2^2 \right)-h_2\left(x_2+h_1^2 \right)}{\left(x^2+h_1^2 \right)\left((w-x)^2+h_2^2 \right)}$$
Equating this to zero implies:
$$h_1\left((w-x)^2+h_2^2 \right)=h_2\left(x^2+h_1^2 \right)$$
Now, expanding and arranging in standard quadratic form, we obtain:
$$\left(h_2-h_1 \right)x^2+\left(2h_1w \right)x+h_1\left(h_1h_2-h_2^2-w^2 \right)=0$$
We find that the discriminant $\Delta$ is:
$$\Delta=\left(2h_1w \right)^2-4\left(h_2-h_1 \right)\left(h_1\left(h_1h_2-h_2^2-w^2 \right) \right)$$
After simplification we find:
$$\Delta=4h_1h_2\left(\left(h_2-h_1 \right)^2+w^2 \right)$$
and so, application of the quadratic formula on the quadratic in $x$, and discarding the negative root, there results:
$$x=\frac{-h_1w+\sqrt{h_1h_2\left(\left(h_2-h_1 \right)^2+w^2 \right)}}{h_2-h_1}$$
To find what portion of the distance between the two poles, as measured from the first pole, we must take as the staking point for the two wires, we may use:
$$\frac{x}{w}=\frac{-h_1w+\sqrt{h_1h_2\left(\left(h_2-h_1 \right)^2+w^2 \right)}}{w\left(h_2-h_1 \right)}$$