MHB Optimizing Triangle Area on a Circle: Finding the Minimum with Tangents

  • Thread starter Thread starter DrunkenOldFool
  • Start date Start date
  • Tags Tags
    Circles
AI Thread Summary
Tangents are drawn from a point A on the x-axis to the circle defined by x²+y²=32, with points B and C where the tangents intersect the y-axis. The area of triangle ABC is expressed as a function of k, the x-coordinate of point A, leading to the formula a(k) = (4√2k²)/(√(k²-32)). To find the minimum area, the derivative of a(k) is calculated and set to zero, resulting in k values of ±8. The minimum area occurs at the points (8,0) and (-8,0).
DrunkenOldFool
Messages
20
Reaction score
0
Tangents are drawn to the circle $x^2+y^2=32$ from a point $A$ lying on the x-axis. The tangents cut the y-axis at a point $B$ and $C$, then find the coordinate(s) of $A$ such that the area of $\Delta ABC$ is minimum.
 
Mathematics news on Phys.org
The point $A$ lies on the x-axis so we can assume it to be $(k,0)$. The next step is to find the equation of tangents to the circle $x^2+y^2=32$ passing through $(k,0)$. Note that $y=m(x-k)$ is any general line passing through $(k,0)$. The perpendicular distance from the center of the circle to the line $y=m(x-k)$ will be equal to $\displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|$. If this distance is equal to the radius of the circle then it will be a tangent.

\[ \displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|= 4\sqrt{2}\]

From here you will get $\displaystyle m=\pm \frac{4\sqrt{2}}{\sqrt{k^2-32}}$. So the two tangents are $y\sqrt{k^2-32}=\pm 4\sqrt{2}(x-k)$. The points $B$ and $C$ will come out to be $\left(0, \dfrac{4\sqrt{2}k}{\sqrt{k^2-32}}\right)$ and $\left(0, \dfrac{-4\sqrt{2}k}{\sqrt{k^2-32}}\right)$.
The area of $\Delta ABC$ will be equal to

\[ a(k)=\frac{1}{2} BC \times AO=\frac{1}{2}\frac{8\sqrt{2}k}{\sqrt{k^2-32}}k=\frac{4\sqrt{2}k^2}{\sqrt{k^2-32}}\]

We seek the value of $k$ for which $a(k)$ is minimum. Calculate the derivative of $a(k)$ and then set it to 0.

\[ 0= \frac{8k\sqrt{2(k^2-32)} -\frac{4\sqrt{2}k^3}{\sqrt{k^2-32}}}{k^2-32}\]

From here you should get $k=\pm 8$. The minimum area is obtained at $(8,0)$ and $(-8,0)$.
 
Last edited:
sbhatnagar said:
The point $A$ lies on the x-axis so we can assume it to be $(k,0)$. The next step is to find the equation of tangents to the circle $x^2+y^2=32$ passing through $(k,0)$. Note that $y=m(x-k)$ is any general line passing through $(k,0)$. The perpendicular distance from the center of the circle to the line $y=m(x-k)$ will be equal to $\displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|$. If this distance is equal to the radius of the circle then it will be a tangent.

\[ \displaystyle \Bigg| \dfrac{mk}{\sqrt{1+m^2}}\Bigg|= 4\sqrt{2}\]

From here you will get $\displaystyle m=\pm \frac{4\sqrt{2}}{\sqrt{k^2-32}}$. So the two tangents are $y\sqrt{k^2-32}=\pm 4\sqrt{2}(x-k)$. The points $B$ and $C$ will come out to be $\left(0, \dfrac{4\sqrt{2}k}{\sqrt{k^2-32}}\right)$ and $\left(0, \dfrac{-4\sqrt{2}k}{\sqrt{k^2-32}}\right)$.
The area of $\Delta ABC$ will be equal to

\[ a(k)=\frac{1}{2} BC \times AO=\frac{1}{2}\frac{8\sqrt{2}k}{\sqrt{k^2-32}}k=\frac{4\sqrt{2}k^2}{\sqrt{k^2-32}}\]

We seek the value of $k$ for which $a(k)$ is minimum. Calculate the derivative of $a(k)$ and then set it to 0.

\[ 0= \frac{8k\sqrt{2(k^2-32)} -\frac{4\sqrt{2}k^3}{\sqrt{k^2-32}}}{k^2-32}\]

From here you should get $k=\pm 8$. The minimum area is obtained at $(8,0)$ and $(-8,0)$.

Thank You!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top