yuiop
- 3,962
- 20
Proof that H is not a function of r.
Starting with the textbook geodesic equation derived without any assumptions of constants:
\frac{d^2\phi}{ds^2} = \frac{-2}{r} \frac{dr}{ds}\frac{d\phi}{ds} - 2 \cot \theta \frac{d\phi}{ds} \frac{d\theta}{ds}
Seehttp://sites.google.com/site/espen180files/Schwartzschild.pdf?attredirects=2"
For orbital motion in a plane with d\theta/ds=0 and \theta = \pi/2[/tex] this reduces to:<br /> <br /> \frac{d^2\phi}{ds^2} = -\frac{2}{r} \frac{dr}{ds}\frac{d\phi}{ds}<br /> <br /> \Rightarrow \frac{d}{ds} \left(\frac{d\phi}{ds} \right) = -\frac{2}{r} \frac{dr}{ds}\frac{d\phi}{ds}<br /> <br /> \Rightarrow \frac{d}{dr} \left(\frac{d\phi}{ds} \right) = -\frac{2}{r} \frac{d\phi}{ds}<br /> <br /> \Rightarrow r^2 \frac{d}{dr} \left(\frac{d\phi}{ds} \right) = -2r \frac{d\phi}{ds}<br /> <br /> \Rightarrow r^2 \frac{d}{dr} \left(\frac{d\phi}{ds} \right) = -\frac{d}{dr}(r^2) \frac{d\phi}{ds} + C_{(r)}<br /> <br /> where C_{(r)} is a constant with respect to r.<br /> <br /> \Rightarrow r^2 \frac{d}{dr} \left(\frac{d\phi}{ds} \right) + \frac{d}{dr}(r^2) \frac{d\phi}{ds} = C_{(r)}<br /> <br /> \Rightarrow \frac{d}{dr} \left( r^2\frac{d\phi}{ds} \right) = C_{(r)}<br /> <br /> \Rightarrow \frac{d}{dr} \left(H) = C_{(r)}<br /> <br /> Therefore H is a constant with respect to r for a particle in freefall under all circumstances.<br /> <br /> QED.
Starting with the textbook geodesic equation derived without any assumptions of constants:
\frac{d^2\phi}{ds^2} = \frac{-2}{r} \frac{dr}{ds}\frac{d\phi}{ds} - 2 \cot \theta \frac{d\phi}{ds} \frac{d\theta}{ds}
Seehttp://sites.google.com/site/espen180files/Schwartzschild.pdf?attredirects=2"
For orbital motion in a plane with d\theta/ds=0 and \theta = \pi/2[/tex] this reduces to:<br /> <br /> \frac{d^2\phi}{ds^2} = -\frac{2}{r} \frac{dr}{ds}\frac{d\phi}{ds}<br /> <br /> \Rightarrow \frac{d}{ds} \left(\frac{d\phi}{ds} \right) = -\frac{2}{r} \frac{dr}{ds}\frac{d\phi}{ds}<br /> <br /> \Rightarrow \frac{d}{dr} \left(\frac{d\phi}{ds} \right) = -\frac{2}{r} \frac{d\phi}{ds}<br /> <br /> \Rightarrow r^2 \frac{d}{dr} \left(\frac{d\phi}{ds} \right) = -2r \frac{d\phi}{ds}<br /> <br /> \Rightarrow r^2 \frac{d}{dr} \left(\frac{d\phi}{ds} \right) = -\frac{d}{dr}(r^2) \frac{d\phi}{ds} + C_{(r)}<br /> <br /> where C_{(r)} is a constant with respect to r.<br /> <br /> \Rightarrow r^2 \frac{d}{dr} \left(\frac{d\phi}{ds} \right) + \frac{d}{dr}(r^2) \frac{d\phi}{ds} = C_{(r)}<br /> <br /> \Rightarrow \frac{d}{dr} \left( r^2\frac{d\phi}{ds} \right) = C_{(r)}<br /> <br /> \Rightarrow \frac{d}{dr} \left(H) = C_{(r)}<br /> <br /> Therefore H is a constant with respect to r for a particle in freefall under all circumstances.<br /> <br /> QED.
Last edited by a moderator: