- #1

Square1

- 143

- 1

We know 0/x when x > 0, is equal to 0. x/0 is undefined..since we "blow up" dividing any value by a value that is more than infinitely small...by zero.

We say that 0/0 is also undefined. We choose to consider the denominator 0 here first to say, "dividing by zero...can't be defined", instead of first considering the numerator and saying maybe, "zero is going to be divided. It's going to be equal to zero no matter what since we started with nothing".

Question: Is there an algebraic rule, or convention, that generally states you should start to evaluate the denominators first? Or is x/0 simply its own case where we can begin and end evaluating the parts that make up an expression?