MHB Order Pairs of Relation R on S: Multiply for Even Result

  • Thread starter Thread starter sMilips
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
The discussion focuses on defining a relation R on the set S = {1,2,5,6} where the order pairs (a,b) belong to R if the product a*b is even. An example provided is (2,1), which is valid since 2*1 equals 2, an even number. Conversely, (1,5) is excluded from R as it results in an odd product of 5. Participants are encouraged to clarify any confusion regarding the mathematical notation used in the responses. The main goal is to identify at least four valid order pairs that satisfy the condition of producing an even result.
sMilips
Messages
2
Reaction score
0
Q: Let S = {1,2,5,6 } Define a relation R on S of at least four order pairs, as (a,b)  R iff a*b is

Q: Let S = {1,2,5,6 }
Define a relation R on S of at least four order pairs, as (a,b)  R iff a*b is even (i.e. a multiply by b is even)
 
Physics news on Phys.org
Re: Q: Let S = {1,2,5,6 } Define a relation R on S of at least four order pairs, as (a,b)  R iff a*

Hi sMilips.

You want $(a,b)$ such that $ab$ is even. So $(2,1)$ is possible since $2\cdot1=2$ is even. But you don’t want $(1,5)$ because $1\cdot5=5$ is odd. Thus $(1,5)\notin R$ but $(2,1)$ can be in $R$ (it doesn’t have to but you can include it if you want). In general, if $ab$ is even, what can you say about one (possibly both) of $a$ and $b$?
 
Re: Q: Let S = {1,2,5,6 } Define a relation R on S of at least four order pairs, as (a,b)  R iff a*

Plz type clear. Did not understand your answer.
 
Re: Q: Let S = {1,2,5,6 } Define a relation R on S of at least four order pairs, as (a,b)  R iff a*

sMilips said:
Plz type clear. Did not understand your answer.
Please write the exact part in Olinguito's answer that you did not understand and why. Also, the answer in post 2 uses so-called LaTeX to show mathematical formulas. If they look garbled somehow on your device but the rest of the text looks OK, please say so. If there are other problems with displaying the thread, please describe it.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K