MHB Orientation-preserving isometry of R^n

  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Isometry
kalish1
Messages
79
Reaction score
0
Orientation-preserving isometry

I am preparing for an exam, and would like to have a rigorous definition of the following:

**Orientation-preserving isometry of $R^n$**

I know that it is something like the following (feel free to correct my wording):

When the homomorphism $\pi:M_n \rightarrow O_n$ is applied to the unique representation $t_a\phi$ of an isometry $f$, and $\pi(f)=\phi$, define $\sigma:M_n \rightarrow \pm 1$. This map that sends an **isometry of $R^n$** to $1$ is **orientation-preserving**.
 
Last edited:
Physics news on Phys.org
I'm a little baffled by what you mean, here. What is $M_n$?

As I understand it, any isometry is composed of a "translational part", and a "linear part".

Translation does not affect orientation, and is irrelevant, here. Because isometries preserve distances, it is clear to see the linear part is an orthogonal transformation. Thus the linear part has determinant $\pm 1$. The isometries whose linear parts have determinant 1 ("proper rotations") are the orientation-preserving isometries.

Now, it may be what you are saying is the same as what I am if:

$\sigma = \det \circ \pi$, where $\pi$ is the canonical (group) surjection of the quotient of the isometry group by the normal translational subgroup.

Another way to say this is: an isometry is orentation-preserving if it can be written as a composition of a translation and an element of the special orthogonal group.

Because $\sigma$ (as I have defined it) is a composition of group homomorphisms, it is itself a group homomorphism, and the orientation-preserving isometries can be realized as its kernel.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
Replies
10
Views
2K
  • · Replies 26 ·
Replies
26
Views
689
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
802
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K