Orthogonal Vectors in Rn Problem

Click For Summary
SUMMARY

The discussion centers on determining a vector ##c## that lies on the line segment between two distinct vectors ##a## and ##b## in ##\mathbb{R}^n##, such that ##c## is orthogonal to the vector ##(b-a)##. The solution involves expressing ##c## as ##c = a + t_0(b-a)##, where ##t_0 = -\frac{}{|b-a|^2}##. The conclusion drawn is that for any vector ##x## in the segment ##[a,b]##, with ##x \neq c##, it holds that ##|c| < |x|##. The discussion also highlights that if ##t## is allowed to take values outside the interval ##[0,1]##, the minimization of the function ##F(t) \equiv \|c\|^2## becomes valid.

PREREQUISITES
  • Understanding of vector spaces in ##\mathbb{R}^n##
  • Familiarity with inner product definitions and properties
  • Knowledge of the Cauchy-Schwarz inequality
  • Ability to work with quadratic functions and minimization techniques
NEXT STEPS
  • Explore the implications of the Cauchy-Schwarz inequality in vector analysis
  • Learn about quadratic functions and their minimization in multivariable calculus
  • Study orthogonal projections in vector spaces
  • Investigate the geometric interpretation of vectors and their relationships in ##\mathbb{R}^n##
USEFUL FOR

Mathematicians, physics students, and anyone studying linear algebra or vector calculus will benefit from this discussion, particularly those interested in orthogonality and vector relationships in multidimensional spaces.

Onezimo Cardoso
Messages
11
Reaction score
2

Homework Statement


Given ##a\neq b## vectors of ##\mathbb{R}^n##. Determine ##c## which lies in the line segment ##[a,b]=\{a+t(b-a) ; t \in [0,1]\}##, such that ##c \perp (b-a)##. Conclude that for all ##x \in [a,b]##, with ##x\neq c## it is true that ##|c|<|x|##.

Homework Equations


The first part of the question can be solved just using inner product definition.
I don't know how the second part can be solved. But I think could be useful the Cauchy-Schawarz inequality ##|<x,y>| \leq |x||y|## or maybe the cosine rule...

The Attempt at a Solution


If we suppose that ##c \in [a,b]## then we can write ##c## as:
$$c=a+t_0 (b-a)$$
where ##t_0 \in [0,1]##.
By the fact that ##c \perp (b-a)## we have:
$$<c,(b-a)> \quad = \quad0$$
$$\Rightarrow \quad <a+t_0 (b-a),(b-a)> \quad = \quad 0$$
$$\Rightarrow \quad <a,(b-a)>+<t_0 (b-a),(b-a)> \quad =\quad 0$$
$$\Rightarrow \quad <a,(b-a)>+t_0 |b-a|^2=0$$
$$\Rightarrow t_0 = - \frac{<a,(b-a)>}{|b-a|^2} $$

Then ##c## can be uniquely determined as ##c=a+t_0 (b-a)##, where ##t_0 = - \frac{<a,(b-a)>}{|b-a|^2}##.
$$\ldots$$
Now we need to prove that if we consider any other ##x \neq c## in the line segment ##[a,b]## then ##|c|<|x|##.

upload_2018-7-12_16-35-57.png
 

Attachments

  • upload_2018-7-12_16-35-57.png
    upload_2018-7-12_16-35-57.png
    11.9 KB · Views: 491
Last edited:
Physics news on Phys.org
You can show that ##x = c + k(b-a)## for some ##k \ne 0##. Then calculate ##\langle x,x \rangle##.
 
  • Like
Likes Onezimo Cardoso
Onezimo Cardoso said:

Homework Statement


Given ##a\neq b## vectors of ##\mathbb{R}^n##. Determine ##c## which lies in the line segment ##[a,b]=\{a+t(b-a) ; t \in [0,1]\}##, such that ##c \perp (b-a)##. Conclude that for all ##x \in [a,b]##, with ##x\neq c## it is true that ##|c|<|x|##.
The premise of the question is wrong: if ##a \neq b, \; a,b \in \mathbb{R}^n## it is not necessarily true that ##c \perp (b-a)## for some ##t \in [0,1].## For example, if ##a = (1,1)## and ##b = (2,1)##, we have ##b-a = (1,0)## and ##c = (1,1)+t(1,0) = (1+t,1)##. In order to have ##c \perp (b-a)## we need ##t = -1##, so the"perpendicular" ##c## is not on the segment from ##a## to ##b##; it is outside that segment, but still on the line through ##a## and ##b##.

However, if you allow values ##t < 0## and ##t > 1##---in other words, if you allow any ##t \in \mathbb{R}##---then the "minimization" result is true. The easiest way to get that is to minimize ##F(t) \equiv \| c \|^2##, which is a quadratic function of ##t##.
 
Last edited:
  • Like
Likes Onezimo Cardoso
Ray Vickson said:
The premise of the question is wrong: if ##a \neq b, \; a,b \in \mathbb{R}^n## it is not necessarily true that ##c \perp (b-a)## for some ##t \in [0,1].## For example, if ##a = (1,1)## and ##b = (2,1)##, we have ##b-a = (1,0)## and ##c = (1,1)+t(1,0) = (1+t,1)##. In order to have ##c \perp (b-a)## we need ##t = -1##, so the"perpendicular" ##c## is not on the segment from ##a## to ##b##; it is outside that segment, but still on the line through ##a## and ##b##.

However, if you allow values ##t < 0## and ##t > 1##---in other words, if you allow any ##t \in \mathbb{R}##---then the "minimization" result is true. The easiest way to get that is to minimize ##F(t) \equiv \| c \|^2##, which is a quadratic function of ##t##.

Very well noticed Ray Vickson!
Ok I can reformulate the question as follow:

Homework Statement


Given ##a\neq b## vectors of ##\mathbb{R}^n##. Determine ##c## which lies in the line ##r## determined by in the line segment ##[a,b]=\{a+t(b-a) ; t \in [0,1]\}##, such that ##c \perp r##. Conclude that for all ##x \in r##, with ##x\neq c## it is true that ##|c|<|x|##.

The solution I wrote before can be used in the same way, i.e:
$$c = a + t_0 (b-a) \quad where \quad t_0 = - \frac{<a,(b-a)>}{|b-a|^2}$$

But regarding the last part, i.e., to prove that ##|x|<|c|## for all ##x \in r##, I have no clue how can I minimize the function ##F(t) \equiv \| x \|^2 \equiv \| a+t(b-a) \|^2##.
 
vela said:
You can show that ##x = c + k(b-a)## for some ##k \ne 0##. Then calculate ##\langle x,x \rangle##.

In fact vela, we can write any ##x## in the line determined by the line segment ##[a,b]## as ##x = c + k(b-a)##.
But follow your tip I stucked at the following red question mark:

upload_2018-7-12_19-58-37.png
 

Attachments

  • upload_2018-7-12_19-58-37.png
    upload_2018-7-12_19-58-37.png
    15.4 KB · Views: 459
Don’t substitute for ##c##.
 
Onezimo Cardoso said:
Very well noticed Ray Vickson!
Ok I can reformulate the question as follow:

Homework Statement


Given ##a\neq b## vectors of ##\mathbb{R}^n##. Determine ##c## which lies in the line ##r## determined by in the line segment ##[a,b]=\{a+t(b-a) ; t \in [0,1]\}##, such that ##c \perp r##. Conclude that for all ##x \in r##, with ##x\neq c## it is true that ##|c|<|x|##.

The solution I wrote before can be used in the same way, i.e:
$$c = a + t_0 (b-a) \quad where \quad t_0 = - \frac{<a,(b-a)>}{|b-a|^2}$$

But regarding the last part, i.e., to prove that ##|x|<|c|## for all ##x \in r##, I have no clue how can I minimize the function ##F(t) \equiv \| x \|^2 \equiv \| a+t(b-a) \|^2##.

As I said already, that is a quadratic function of ##t##. Just expand out ##\| a + (b-a)t \|^2##, using the definition of ##\| \cdot \|^2.##
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
11
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
4K
Replies
12
Views
4K