- #1
Onezimo Cardoso
- 11
- 2
Homework Statement
Let ##x,y \in \mathbb{R^n}## not null vectors. If for all ##z \in \mathbb{R^n}## that is orthogonal to ##x## we have that ##z## is also orthogonal to ##y##, prove that ##x## and ##y## are multiple of each other.
Homework Equations
We can use that fact that ##<x , y-\frac{<x,y>}{|x|^2}x> = 0##
The Attempt at a Solution
If ##x=y## the result follow directly. So let us suppose that ##x\neq y##.
Using the fact that ##<x , y-\frac{<x,y>}{|x|^2}x> = 0## and the hypothesis we can affirm that ##<y , y-\frac{<x,y>}{|x|^2}x> = 0##.
Further, by the fact that ##<x , y-\frac{<x,y>}{|x|^2}x> = 0## and ##<y , y-\frac{<x,y>}{|x|^2}x> = 0## we have:
$$<x , y-\frac{<x,y>}{|x|^2}x> = <y , y-\frac{<x,y>}{|x|^2}x> $$
$$\Rightarrow <x , y-\frac{<x,y>}{|x|^2}x> - <y , y-\frac{<x,y>}{|x|^2}x> = 0$$
$$\Rightarrow <x - y , y-\frac{<x,y>}{|x|^2}x> =0 \quad (*)$$
Until here everything seems great. But now...
Once ##x\neq y## , second the source I got this solution, by ##(*)## we can affirm that:
$$y-\frac{<x,y>}{|x|^2}x = 0$$
$$\Rightarrow y = \alpha x$$
Where ##\alpha = \frac{<x,y>}{|x|^2}x ##
But the fact is if we have ##<x,y>=0## not necessarily we must have ##x=0## or ##y=0##.
Can anyone see if I could not see a relevant fact in the argument or someone have another look for this problem?
Thanks in advance.
Last edited: