Orthonormal Basis times a real Matrix

Click For Summary
SUMMARY

The discussion centers on proving that a set of vectors $(v_1, v_2, ..., v_n)$ forms an orthonormal basis if and only if the real matrix $A$ is orthogonal, given that $(v_1, v_2, ..., v_n) = (u_1, u_2, ..., u_n)A$ where $\{u_1, u_2, ..., u_n\}$ is an orthonormal basis for vector space $V$. The proof involves showing that if $A$ is orthogonal, then the inner product $\langle Au_i, Au_j\rangle$ retains the orthonormality of the original basis. Conversely, if $(v_1, v_2, ..., v_n)$ is orthonormal, it leads to the conclusion that $A^TA = I$, confirming that $A$ is orthogonal.

PREREQUISITES
  • Understanding of orthonormal bases in vector spaces
  • Knowledge of orthogonal matrices and their properties
  • Familiarity with inner product spaces and linear independence
  • Basic linear algebra concepts, including matrix multiplication
NEXT STEPS
  • Study the properties of orthogonal transformations in linear algebra
  • Learn about the Gram-Schmidt process for constructing orthonormal bases
  • Explore the implications of the spectral theorem for symmetric matrices
  • Investigate applications of orthogonal matrices in computer graphics and data analysis
USEFUL FOR

Mathematicians, students of linear algebra, and professionals in fields requiring vector space analysis, such as physics and engineering, will benefit from this discussion.

linearishard
Messages
8
Reaction score
0
Hi!

I have an orthonormal basis for vector space $V$, $\{u_1, u_2, ..., u_n\}$. If $(v_1, v_2, ..., v_n) = (u_1, u_2, ... u_n)A$ where $A$ is a real $n\times n$ matrix, how do I prove that $(v_1, v_2, ... v_n)$ is an orthonormal basis if and only if $A$ is an orthogonal matrix?

Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
Could you explain how $(u_1, u_2, \ldots, u_n)A$ is defined? I don't understand, since the $u_j$ are vectors in an arbitrary $n$-dimensional (real) vector space, while $A$ is an $n \times n$ matrix.

Do you mean to write $v_j = Au_j$ where $A$ is an endomorphism of a real inner product space $V$ and then prove that the $v_j$ form an orthonormal basis iff $A$ is an orthogonal transformation?
 
Last edited:
Hi, yes that is what I meant! Sorry!
 
Hi linearishard,

First suppose $A$ is orthogonal. Then $A^TA = I$, so for all $i,j\in \{1,2,\ldots, n\}$, $$\langle Au_i, Au_j\rangle = \langle A^TAu_i, u_j\rangle =\langle Iu_i, u_j\rangle = \langle u_i, u_j\rangle = \delta_{ij}$$ where the last equality follows from orthonormality of $\{u_1,\ldots, u_n\}$. Therefore, $\{v_1,\ldots, v_n\}$ is an orthonormal set. The set $\{v_1,\ldots, v_n\}$ is also linearly independent, for if $$\sum_{i = 1}^n c_i v_i = 0$$ is a linear dependence relation, then $$A\left(\sum_{i = 1}^n c_i u_i\right) = 0$$ Pre-multiplying both sides of the equation by $A^T$ and using the fact $A^TA = I$, one receives $$\sum_{i = 1}^n c_i u_i = 0$$ whence $c_1 = \cdots = c_n = 0$ by linear independence of $\{u_1,\ldots, u_n\}$. Thus, $\{v_1,\ldots, v_n\}$ is a basis for $V$.

Conversely, suppose $\{v_1,\ldots, v_n\}$ an orthonormal basis. For all indices $i$ and $j$, $\langle Au_i, Au_j\rangle = \delta_{ij}$. So since $\{u_1,\ldots, u_n\}$ is an orthonormal basis then for every $i$ $$A^T Au_i = \sum_{j = 1}^n \langle A^T A u_i, u_j\rangle u_j = \sum_{j = 1}^n \langle Au_i, Au_j\rangle u_j = \sum_{j = 1}^n \delta_{ij}u_j = u_i$$ Consequently $A^TA = I$, i.e., $A$ is orthogonal. $\blacksquare$
 
Thank you for your response, could you please explain to me the logic behind the last line? How do you go from <ATAui,uj> to <Aui,Auj>?
 
Since $A^T$ is the adjoint of $A$, $\langle A^Tx,y\rangle = \langle x, Ay\rangle$ for all $x,y\in V$. In particular, the equality holds when $x = Au_i$ and $y = u_j$.
 
Since we're apparently working with real numbers, we can write:
$$\langle A^Tx,y\rangle
= (A^Tx)^T \cdot y
= (x^TA)\cdot y
=x^T\cdot (Ay)
=\langle x, Ay\rangle
$$
This is generally true for the dot product of vectors with real numbers.
For complex numbers the same thing holds, just with the conjugate transpose or adjoint (usually written as $A^\dagger$, $A^*$, or $A^H$) instead of the transpose $A^T$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K