# Oscillations of air-track glider

A 160 g air-track glider is attached to a spring with spring constant 4.40 N/m. The damping constant due to air resistance is 2.40×10−2 kg/s. The glider is pulled out 23.0 cm from equilibrium and released.

How many oscillations will it make during the time in which the amplitude decays to e^-1 of its initial value?

I have no clue how to approach this problems except that
x(t)=Ae^-bt/2m=Ae^-t/2tau
but how can I fin that amount of oscillations?
I'm confused and the dead lines in an hour

Related Introductory Physics Homework Help News on Phys.org
OlderDan
Homework Helper
Kalie said:
A 160 g air-track glider is attached to a spring with spring constant 4.40 N/m. The damping constant due to air resistance is 2.40×10−2 kg/s. The glider is pulled out 23.0 cm from equilibrium and released.

How many oscillations will it make during the time in which the amplitude decays to e^-1 of its initial value?

I have no clue how to approach this problems except that
x(t)=Ae^-bt/2m=Ae^-t/2tau
but how can I fin that amount of oscillations?
I'm confused and the dead lines in an hour