MHB Outer measure exclusion of zero set question

  • Thread starter Thread starter Tom555
  • Start date Start date
  • Tags Tags
    Measure Set Zero
Click For Summary
The discussion centers on understanding why the exclusion of a zero set does not affect the outer measure in measure theory, specifically referencing Pugh's Mathematical Analysis. The key argument is that since a zero set has measure zero, the outer measure of a set remains unchanged when a zero set is excluded. The confusion arises regarding the inclusion of the intersection of the set with the zero set, which is clarified by noting that both the zero set and its intersection with any set also have measure zero. The conclusion is that the outer measure of the set minus the zero set is equal to the outer measure of the original set. This explanation effectively resolves the initial question posed about the measure theory concept.
Tom555
Messages
4
Reaction score
0
I've just started self-studying measure theory by reading Pugh's Mathematical Analysis. I'm trying to understand his argument for why the exclusion of a zero set does not change the outer measure: $m^*(E\setminus Z)=m^*(E)$:

(Pugh's arugment): Let $Z$ be a zero set, $E\subseteq\mathbb{R}$, and $m^*$ be the Lebesgue outer measure. Since $m^*(E)=m^*(E\cup Z)$, applying this to the set $E\setminus Z$ gives $m^*(E\setminus Z)=m^*((E\setminus Z)\cup(E\cap Z))=m^*(E).$ QED

My question is where does the $E\cap Z$ come from in the second equality above? If you're using $m^*(E)=m^*(E\cup Z)$ and making the substitution $E\to E\setminus Z$, why isn't it $m^*(E\setminus Z)=m^*((E\setminus Z)\cup Z)?$

Also, this is my first post on this site, so I apologize if something isn't formatted correctly.
 
Physics news on Phys.org
Adam1729 said:
I've just started self-studying measure theory by reading Pugh's Mathematical Analysis. I'm trying to understand his argument for why the exclusion of a zero set does not change the outer measure: $m^*(E\setminus Z)=m^*(E)$:

(Pugh's arugment): Let $Z$ be a zero set, $E\subseteq\mathbb{R}$, and $m^*$ be the Lebesgue outer measure. Since $m^*(E)=m^*(E\cup Z)$, applying this to the set $E\setminus Z$ gives $m^*(E\setminus Z)=m^*((E\setminus Z)\cup(E\cap Z))=m^*(E).$ QED

My question is where does the $E\cap Z$ come from in the second equality above? If you're using $m^*(E)=m^*(E\cup Z)$ and making the substitution $E\to E\setminus Z$, why isn't it $m^*(E\setminus Z)=m^*((E\setminus Z)\cup Z)?$

Also, this is my first post on this site, so I apologize if something isn't formatted correctly.
I think the following is being said: Since $Z$ is a zero set, so is $E\cap Z$. Thus $m^*(A)=m^*(A\cup (E\cap Z))$ for any $A\subseteq \mathbb R$. In particular we can take, $A=E\setminus Z$.

Does this answer your question?
 
Yes, thank you very much! :)
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K