Overlap of nth QHO excited state and momentum-shifted QHO ground state

Click For Summary
SUMMARY

The discussion focuses on calculating the overlap between the nth excited state of a quantum harmonic oscillator (QHO) and a momentum-shifted ground state using the operator ##e^{i\Delta p x/\hbar}##. The participant derives the expression for the overlap as ##\bra{n}e^{c\hat{a}^\dagger}\ket{0}=\dfrac{(i\Delta p\sqrt{\frac{2}{m\omega\hbar}})^n}{\sqrt{n!}}e^{-\frac{p\Delta p}{m\omega\hbar}}e^{\frac{(\Delta p)^2}{\hbar m\omega}}##, applying the Baker-Campbell-Hausdorff formula. Concerns are raised about the validity of moving the momentum operator's exponential out of the inner product, suggesting a potential alternative approach using coherent states for simplification.

PREREQUISITES
  • Quantum Harmonic Oscillator (QHO) fundamentals
  • Baker-Campbell-Hausdorff formula
  • Operator algebra in quantum mechanics
  • Coherent states in quantum mechanics
NEXT STEPS
  • Study the derivation of the Baker-Campbell-Hausdorff formula in detail
  • Explore the properties and applications of coherent states in quantum mechanics
  • Learn about the implications of momentum-shifting operators in quantum systems
  • Investigate the mathematical techniques for calculating overlaps in quantum states
USEFUL FOR

Quantum physicists, graduate students in quantum mechanics, and researchers exploring quantum state overlaps and operator techniques in quantum harmonic oscillators.

HBHSU
Messages
1
Reaction score
0
##\newcommand{\ket}[1]{|#1\rangle}##
##\newcommand{\bra}[1]{\langle#1|}##
I have a momentum-shifting operator ##e^{i\Delta p x/\hbar}## acting on the ground state ##\ket{0}## of the QHO, and I want to compute the overlap of this state with the n##^{th}## excited QHO state ##\ket{n}##. Given ##\hat{a}^\dagger=\sqrt{\dfrac{m\omega}{2\hbar}}x-ip\sqrt{\dfrac{1}{2m\omega\hbar}}##, I let ##c=i\Delta p\sqrt{\dfrac{2}{m\omega\hbar}}## and obtain ##e^{c\hat{a}^\dagger}\ket{0}=\sum_{m=0}^\infty\dfrac{c^m(\hat{a}^\dagger)^m}{m!}\ket{0}=\sum_{m=0}^\infty\dfrac{c^m}{\sqrt{m!}}\ket{m}##. Then ##\bra{n}e^{c\hat{a}^\dagger}\ket{0}=\bra{n}e^{\frac{i\Delta px}{\hbar}+\frac{p\Delta p}{m\omega\hbar}}\ket{0}=\bra{n}e^{\frac{i\Delta px}{\hbar}}e^{\frac{p\Delta p}{m\omega\hbar}}e^{\frac{-(\Delta p)^2}{\hbar m\omega}}\ket{0}=\dfrac{(i\Delta p\sqrt{\frac{2}{m\omega\hbar}})^n}{\sqrt{n!}},## using the Baker-Campbell-Hausdorff formula. Now I write ##\bra{n}e^{c\hat{a}^\dagger}\ket{0}=\dfrac{(i\Delta p\sqrt{\frac{2}{m\omega\hbar}})^n}{\sqrt{n!}}e^{-\frac{p\Delta p}{m\omega\hbar}}e^{\frac{(\Delta p)^2}{\hbar m\omega}}##. Is this valid? I have concerns about moving the exponential of the momentum operator out of the inner product. Might I instead write ##\ket{n}## in terms of coherent states in order to find the overlap?
 
Physics news on Phys.org
I think, it's much simpler to use yhour equation for the coherent state and just pick out the coefficient of ##|n \rangle## in its expansion in terms of number eigenstates, which you already have!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
674
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K