- #1
- 973
- 31
- TL;DR Summary
- Hi, is there a way to obtain ##(p^k-1)! \equiv X \mbox{ (mod p)}## for ##X## using Wilson's theorem: ##[ (p-1)! \equiv -1 \mbox{(mod p)} ] ##?
Hi All, being ##p## a prime number, is there a way to solve the congruence ##(p^k-1)! \equiv X \mbox{ (mod p)}## for ##X## using Wilson's theorem: $$ (p-1)! \equiv -1 \mbox{(mod p)} $$?