##(p^k -1) \equiv X \mbox{(mod p)}## via Wilson's theorem

  • I
  • Thread starter DaTario
  • Start date
  • Tags
    Theorem
  • #1
973
31
TL;DR Summary
Hi, is there a way to obtain ##(p^k-1)! \equiv X \mbox{ (mod p)}## for ##X## using Wilson's theorem: ##[ (p-1)! \equiv -1 \mbox{(mod p)} ] ##?
Hi All, being ##p## a prime number, is there a way to solve the congruence ##(p^k-1)! \equiv X \mbox{ (mod p)}## for ##X## using Wilson's theorem: $$ (p-1)! \equiv -1 \mbox{(mod p)} $$?
 
Physics news on Phys.org
  • #2
##k=1## is Wilson and ##k>1## means ##(p^k-1)!\equiv 0 \mod p##.
 
  • #3
🤦‍♂️
Thanks!
 

Suggested for: ##(p^k -1) \equiv X \mbox{(mod p)}## via Wilson's theorem

Replies
4
Views
563
Replies
2
Views
110
Replies
11
Views
718
Replies
21
Views
929
Replies
3
Views
741
Replies
8
Views
869
Replies
2
Views
647
Back
Top