A Pairing of electrons in superconductors

StanislavD
Messages
14
Reaction score
6
TL;DR Summary
Can real-space-eigenstates of conduction electrons in crystal cause formation of electronic singlet pairs?
Crystals may contain electronic real-space-eigenstates as ground states, which are spatially much larger than one unit cell, such as impurity states, standing waves at Brillouin zone edges, states of Anderson localization, etc. Every eigenstate is usually occupied by two conduction electrons with opposite spins, forming a singlet pair. Notably: if the eigenstate is limited in real space, then the excitation energy of each singlet electron is not necessarily negligible, so below a certain temperature the singlet pair can be lasting. Isn't this a long-debated pairing mechanism in superconductors ?
 
Physics news on Phys.org
Put some equations into your inital post then it would be easier to comprehend. At least for me.
 
Sadly, we don't discuss personal research at PF even if its available as an arxiv paper. Once the paper gets published in a reputable journal then we can reconsider our position.

Closing this thread.

Jedi
 
  • Like
Likes topsquark
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top