Parabola standard form of equation at x = -1

Click For Summary
SUMMARY

The discussion focuses on finding the standard form of a parabola's equation with its vertex at the origin and passing through the point (-1, 1/8). The correct formulas to use are the general equation y = ax^2 and the standard form x^2 = 4py, where 'a' is equivalent to 1/4p. The solution derived is y = (1/8)x^2, which simplifies to the standard form x^2 - 8y = 0. The discussion clarifies that both forms of the equation are interchangeable when the vertex is at the origin.

PREREQUISITES
  • Understanding of parabolic equations and their characteristics.
  • Familiarity with the vertex form of a parabola: y = a(x-h)^2 + k.
  • Knowledge of the standard form of a parabola: (x-h)^2 = 4p(y-k).
  • Basic algebra skills for solving equations and manipulating expressions.
NEXT STEPS
  • Study the relationship between the parameters 'a' and 'p' in parabolic equations.
  • Learn how to derive the vertex form from standard form and vice versa.
  • Explore the properties of parabolas, including focus and directrix concepts.
  • Practice solving various parabola-related problems using different points and orientations.
USEFUL FOR

Mathematics students, educators, and anyone interested in mastering the concepts of parabolic equations and their applications in algebra and geometry.

Joystar77
Messages
122
Reaction score
0
Find the standard form of the equation of the parabola with the given characteristics and vertex at the origin. Passes through the point (-1, 1/8); vertical axis.

I know that there is no focus of the parabola or equation given for this problem, so how would I solve this problem? Is the correct formula to use the following?:

x^2= 4py

Are these the correct steps to take?

1. Write original equation

2. Divide each side by number given.

3. Write in standard form.
 
Mathematics news on Phys.org
re: Parabola standard form of equation at x=-1

I have two different formulas for using the conic section of a parabola, can someone please tell me which is correct for this type of problem?

The first one is as follows:
Type: Parabola
General Equation: y = a (x-h)^2 + k
Standard Form: (x - h) ^2 = 4p (y-k)

Notation:
1. x2 term and y1 term.
2. (h,k) is vertex.
3. (h, k does not equal p) is center of focus, where p = 1/4a.
4. y =k does not equal p is directrix equation, where p = 1/4a.

Value:
1. a >0, then opens up.
2. a < 0, then opens down.
3. x = h is equation of line of symmetry.
4. Larger [a] = thinner parabola; smaller [a] = fatter parabola.

Type: Parabola
General Equation: x = a (y-k)^2 + h
Standard Form: (y-k)^2 = 4p(x-h)

Notation:
1. x1 term and y2 term.
2. (h,k) is vertex.
3. (h does not equal p, k) is focus, where p = 1/4a.
4. x = h does not equal p is directrix equation, where p = 1/4a.

Values:

1. a > 0, then opens right.
2. a < 0, then opens left.
3. y = k is equation of line of symmetry.

In this problem, find the standard form of the equation of the parabola with the given characteristics and vertex at the origin. Passes through the point (-1, 1/8); vertical axis. Would this problem be correct if I work it out this way?

Vertex is at (0,0), then is the equation y = ax^2?

1/8 = a(-1)^2

a = 1/8

y = (1/8)x^2

STANDARD FORM:

y = (1/8) x^2

8y = x^2

x^2 - 8y = 0

Is this the correct way to solve this problem? Which formula am I suppose to use? If this is not right, then can somebody please help me with this?
 
Re: Parabola standard form of equation at x=-1

Except for the fact that you have the parabola going through a point with x= -1 instead of x= -5, this is exactly the same as your post "Parabola standard form of equation at x= -4" and every answer there applies to this.

You ask "which of these formulas is correct for this type of problem
General Equation: y = a (x-h)^2 + k
Standard Form: (x - h) ^2 = 4p (y-k)"

The answer is that they are the same formula except that the "a" in one is "1/4p" where p is from the other.

In both problems, the "vertex is at the origin" so h= k= 0 and the two equations become
General Equation: y = ax^2
Standard Form: x^2 = 4py
and, again, they are the same with a= 1/4p. Here, you are told that the graph goes through the point (-1, 1/8) so put x= -1, y= 1/8 into either and solve for a or p, as appropriate.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K