- #1

The_ArtofScience

- 83

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter The_ArtofScience
- Start date

- #1

The_ArtofScience

- 83

- 0

- #2

mathman

Science Advisor

- 8,065

- 542

- #3

The_ArtofScience

- 83

- 0

- #4

maze

- 661

- 4

You plug the coordinates into the equation for each of the 5 points. That gives you 5 equations and 5 unknowns, which you can solve for.

Eg: suppose the curve passes through the following points (im just making these points up):

(1,2); (0,0); (3,4); (-1,3); (-2,-3).

Plugging each point into the equation

[tex]x^2+b \cdot x \cdot y+c \cdot y^2+m \cdot x+n \cdot y+k=0[/tex],

you get the following 5 equations:

[tex]1^2+b \cdot 1 \cdot 2+c \cdot 2^2+m \cdot 1+n \cdot 2+k=0[/tex]

[tex]0^2+b \cdot 0 \cdot 0+c \cdot 0^2+m \cdot 0+n \cdot 0+k=0[/tex]

[tex]3^2+b \cdot 3 \cdot 4+c \cdot 4^2+m \cdot 3+n \cdot 4+k=0[/tex]

[tex](-1)^2+b \cdot (-1) \cdot 3+c \cdot 3^2+m \cdot (-1)+n \cdot 3+k=0[/tex]

[tex](-2)^2+b \cdot (-2) \cdot (-3)+c \cdot (-3)^2+m \cdot (-2)+n \cdot (-3)+k=0[/tex]

Simplifying,

[tex]1+2 b+4 c+m +2 n+k=0[/tex]

[tex]k=0[/tex]

[tex]9+12 b+16 c+3 m+4 n+k=0[/tex]

[tex]1-3 b +9 c-1 m+3 n+k=0[/tex]

[tex]4+6 b+9 c-2 m-3 n+k=0[/tex]

Now you can solve these equations for b,c,m,n, and k.

----

I went ahead and solved this system of equations since it isn't much trouble, and got the following answers:

b = 116/33

c = -95/33

m = -133/11

n = 257/33

k = 0

So,

[tex]x^2+\frac{116}{33}x \cdot y-\frac{95}{33} y^2-\frac{133}{11} x+\frac{257}{33} y=0[/tex]

Plotting the resulting figure, it looks like a hyperbola, and it passes through all the points we want. Whew!

http://img520.imageshack.us/img520/8662/hyperbolapl5.png [Broken]

Eg: suppose the curve passes through the following points (im just making these points up):

(1,2); (0,0); (3,4); (-1,3); (-2,-3).

Plugging each point into the equation

[tex]x^2+b \cdot x \cdot y+c \cdot y^2+m \cdot x+n \cdot y+k=0[/tex],

you get the following 5 equations:

[tex]1^2+b \cdot 1 \cdot 2+c \cdot 2^2+m \cdot 1+n \cdot 2+k=0[/tex]

[tex]0^2+b \cdot 0 \cdot 0+c \cdot 0^2+m \cdot 0+n \cdot 0+k=0[/tex]

[tex]3^2+b \cdot 3 \cdot 4+c \cdot 4^2+m \cdot 3+n \cdot 4+k=0[/tex]

[tex](-1)^2+b \cdot (-1) \cdot 3+c \cdot 3^2+m \cdot (-1)+n \cdot 3+k=0[/tex]

[tex](-2)^2+b \cdot (-2) \cdot (-3)+c \cdot (-3)^2+m \cdot (-2)+n \cdot (-3)+k=0[/tex]

Simplifying,

[tex]1+2 b+4 c+m +2 n+k=0[/tex]

[tex]k=0[/tex]

[tex]9+12 b+16 c+3 m+4 n+k=0[/tex]

[tex]1-3 b +9 c-1 m+3 n+k=0[/tex]

[tex]4+6 b+9 c-2 m-3 n+k=0[/tex]

Now you can solve these equations for b,c,m,n, and k.

----

I went ahead and solved this system of equations since it isn't much trouble, and got the following answers:

b = 116/33

c = -95/33

m = -133/11

n = 257/33

k = 0

So,

[tex]x^2+\frac{116}{33}x \cdot y-\frac{95}{33} y^2-\frac{133}{11} x+\frac{257}{33} y=0[/tex]

Plotting the resulting figure, it looks like a hyperbola, and it passes through all the points we want. Whew!

http://img520.imageshack.us/img520/8662/hyperbolapl5.png [Broken]

Last edited by a moderator:

- #5

The_ArtofScience

- 83

- 0

Sorry that you had to go through all that trouble maze. Thanks for the example

- #6

HallsofIvy

Science Advisor

Homework Helper

- 43,021

- 970

Then you are convinced wrong. y= x

both pass through the two points (1, 1) and (-1, 1).

Even given the information that the graph is a parabola, concave upward, with vertical axis, the two points (1, 1) and (-1, 1) are not enough to

Share:

- Last Post

- Replies
- 2

- Views
- 539

- Replies
- 6

- Views
- 247

- Last Post

- Replies
- 6

- Views
- 352

- Last Post

- Replies
- 11

- Views
- 845

- Last Post

- Replies
- 31

- Views
- 4K

- Last Post

- Replies
- 2

- Views
- 421

- Last Post

- Replies
- 9

- Views
- 388

- Last Post

- Replies
- 5

- Views
- 484

- Replies
- 3

- Views
- 902

- Replies
- 1

- Views
- 518