I Parallel transport and entanglement

  • I
  • Thread starter Thread starter Heidi
  • Start date Start date
Heidi
Messages
420
Reaction score
40
Hi Pfs,
When Bob and Alice receive maximally entangled particles, Bob can choose a direction and measure the spin along it.
If Alice does the same thing in the same direction she will get the same result. But what is "same direction" when space time is curved between them? Have we to use parallel transport of Bob's direction toward Alice?
Il looks like when you make a measurement on a particle, if nothing acts on the particle. repeating the same measurement
will give you the same result but if there is the action of an hamiltonian, doing the same measurement to get the same result is also something that evolves (with tim here)
 
Physics news on Phys.org
Heidi said:
Have we to use parallel transport of Bob's direction toward Alice?
No. In case the two particles were initially created in the singlet state (i.e. with total spin 0), then you could transport the direction along the trajectories of the particles. (But note that in this case, "If Alice does the same thing in the opposite direction she will get the same result".)

In general, you just have to "know" how the directions map to each other, because being maximally entangled does not yet fully specify the state. For example, if you have two particles in the singlet state, you can apply a unitary (2x2) matrix to one of the particles, and the state will remain maximally entangled. This unitary matrix gives you some mapping of directions.
 
Heidi said:
Hi Pfs,
When Bob and Alice receive maximally entangled particles, Bob can choose a direction and measure the spin along it.
If Alice does the same thing in the same direction she will get the same result. But what is "same direction" when space time is curved between them? Have we to use parallel transport of Bob's direction toward Alice?
I would assume the entangled state would act effectively as a gyroscope through curved spacetime. I wonder to what extent this has been tested?
 
  • Like
Likes Heidi and topsquark
You'd have to use quantum field theory in the given background spacetime to see, what comes out. For sure it's highly non-trivial.
 
What do you think of the repeated measurement seen as entanglement (with timelike interval) ?
 
Heidi said:
Have we to use parallel transport of Bob's direction toward Alice?
No, because any such transport in curved spacetime will not be unique.

The best approach I can see, theoretically, would be to Fermi-Walker transport (the more robust version of parallel transport that can handle non-geodesic curves) each of the measurement directions backwards along the worldlines of the two particles, to the event of their common creation, and then compare the directions. I think that is what a calculation using QFT in curved spacetime would end up amounting to. But that's just my intuitive guess; I have not actually tried to do the calculation (which, as @vanhees71 points out, would be highly non-trivial).
 
  • Like
Likes Heidi, vanhees71 and gentzen
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top