Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm getting confused over a few points on the derivative of a parametric equation.

Say we the world line of a particle are represented by coordinates [tex] x^i [/tex]. We then parametrize this world line by the parameter t. [tex] x^i = f^i(t) [/tex].

Now here is where I get confused. The partial derivative [tex] \frac {\partial x^i}{\partial t} [/tex] should be zero since x is an independent coordinate and has no explicit time dependence. However, if I take the partial of the RHS above, clearly this is nonzero.

Moreover we define [tex] \dot x^i [/tex] as [tex] \dot x^i = \frac{d x^i}{d t} [/tex]. It seems the RHS will be the same if we take a partial or total derivative, yet the LHS will be zero if we take [tex] \frac {\partial x^i}{\partial t} [/tex] but [tex] \dot x^i [/tex] if we take [tex] \dot x^i = \frac{d x^i}{d t} [/tex]. Is my question clear? Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Partial Derivative of a Parametric Equation

**Physics Forums | Science Articles, Homework Help, Discussion**