MHB Partial Derivatives of Matrix/Vector Function: An Easier Way?

datahead8888
Messages
8
Reaction score
0
I was working on a pde, and I needed to compute a Jacobian for it.

Suppose we have a function consisting of a series of matrices multiplied by a vector:
f(X) = A * B * b
--where X is a vector containing elements that are contained within A, b, and/or b,
--A is a matrix, B is a matrix, and b is a vector

Each Matrix and the vector is expressed as more terms, ie...
X = (x1, x2, x3)

A =
[ x1 + y1 y4 y7 ]
[ y2 x2 + y5 y8 ]
] y3 y6 x3 + y9 ]

B =
[ y1 x2 + y4 x3 + y7 ]
[x1 + y2 y5 y8 ]
] y3 y6 y9 ]

b = [y1 y2 y3]' (' means transposed)

Now we want to find the Jacobian of f - ie the partial derivative of f wrt X.

One way to do this is to multiply the two matrices and then multiply that by the vector, creating one 3x1 vector in which each element is an algebraic expression resulting from matrix multiplication. The partial derivative could then be computed per element to form a 3x3 Jacobian. This would be feasible in the above example, but the one I'm working is a lot more complicated (and so I would also have to look for patterns in order to simplify it afterwards).

I was wanting to try to use the chain rule and/or the product rule for partial derivatives if possible. However, with the product rule you end up with A' * B * b + A * B' * b + A * B * b', where each derivative is wrt to the vector X. I understand that the derivative of a matrix wrt a vector is actually a 3rd order tensor, which is not easy to deal with. If this is not correct, the other terms still have to evaluate to matrices in order for matrix addition to be valid. If I use the chain rule instead, I still end up with the derivative of a matrix wrt a vector.

Is there an easier way to break down a matrix calculus problem like this? I've scoured the web and cannot seem to find a good direction.
 
Physics news on Phys.org
datahead8888 said:
I was working on a pde, and I needed to compute a Jacobian for it.

Suppose we have a function consisting of a series of matrices multiplied by a vector:
f(X) = A * B * b
--where X is a vector containing elements that are contained within A, b, and/or b,
--A is a matrix, B is a matrix, and b is a vector

Each Matrix and the vector is expressed as more terms, ie...
X = (x1, x2, x3)

A =
[ x1 + y1 y4 y7 ]
[ y2 x2 + y5 y8 ]
] y3 y6 x3 + y9 ]

B =
[ y1 x2 + y4 x3 + y7 ]
[x1 + y2 y5 y8 ]
] y3 y6 y9 ]

b = [y1 y2 y3]' (' means transposed)

Now we want to find the Jacobian of f - ie the partial derivative of f wrt X.

One way to do this is to multiply the two matrices and then multiply that by the vector, creating one 3x1 vector in which each element is an algebraic expression resulting from matrix multiplication. The partial derivative could then be computed per element to form a 3x3 Jacobian. This would be feasible in the above example, but the one I'm working is a lot more complicated (and so I would also have to look for patterns in order to simplify it afterwards).

I was wanting to try to use the chain rule and/or the product rule for partial derivatives if possible. However, with the product rule you end up with A' * B * b + A * B' * b + A * B * b', where each derivative is wrt to the vector X. I understand that the derivative of a matrix wrt a vector is actually a 3rd order tensor, which is not easy to deal with. If this is not correct, the other terms still have to evaluate to matrices in order for matrix addition to be valid. If I use the chain rule instead, I still end up with the derivative of a matrix wrt a vector.

Is there an easier way to break down a matrix calculus problem like this? I've scoured the web and cannot seem to find a good direction.

Hi datahead8888! :)

Your analysis is flawless.
Both methods would work perfectly.

Don't worry about 3rd order tensors too much though.
If it seems complicated, just start with the derivative with respect to the first variable.
No tensor in sight.
Then go on with the 2nd variable etcetera and... there you go! ;)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top