We have a function f:R^2->R and it has partial derivative of 2nd order.(adsbygoogle = window.adsbygoogle || []).push({});

Show that [itex]f_{xy}=0 \forall (x,y)\in \mathbb{R}^2 \Leftrightarrow f(x,y)=g(x)+h(y)[/itex]

The <= is self explanatory, the => I am not sure I got the right reasoning.

I mean we know that from the above we have: [itex]f_x=F(x)[/itex] (it's a question before this one), but now besides taking an integral I don't see how to show the consequent.

Any thoughts how to show this without invoking integration?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Partial derivatives (question I am grading).

**Physics Forums | Science Articles, Homework Help, Discussion**