MHB Partial differentiation of an integral

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Hello MHB members and friends!(Callme)

An economy student asked me, if I could explain the following partial differentiation:

\[\frac{\partial}{\partial C(i)}\int_{i\in[0;1]}[C(i)]^\frac{\eta - 1}{\eta}di
=\int_{j\in[0;1]}[C(j)]^\frac{\eta - 1}{\eta}dj\frac{\eta - 1}{\eta}[C(i)]^{-\frac{1}{\eta}}
\]

I am not sure, why the differentiation is performed as shown above ($\eta$ is a constant).

If it can be of any help in understanding the identity, the following should be added:

The function C(i) may or may not take a specific form. Whether or not, the C(i) is usually implicitly defined by the so called “felicity function”, which in this case takes the form:

$ u(C)=\frac{[C(i)]^{1-a}-1}{1-a}$, where a is a constant.

The function u(C) is a measure of the instantaneous utility a consumer has of the consumption amount C. The variable i is a time measure. The theory states, that the consumer prefers consumption instantaneously (“here and now”) instead of saving up for the future.

I presume, that the appearance of the partial derivative is a part of Lagranges optimization.

Thankyou in advance for any help in the matter. I´d also like to thank the MHB staff for a very exciting and interesting homepage!
 
Mathematics news on Phys.org
Hello (Wave) This is called differentiation under the integral sign. The notation might obscure this but I'll try to reveal it.

Although $\eta$ is a constant, you can consider $C(i)^{\frac{\eta -1}{\eta}}$ a function of two variables, that is

$$f(\eta, C(i)) = [C(i)]^{\frac{\eta -1}{\eta}}.$$

With this in mind, we can apply differentiation under the integral sign. Specifying

$$G(C(i)) = \int\limits_{i \in [0,1]} [C(i)]^{\frac{\eta -1}{\eta}} \, di$$

we have

$$
\begin{align}
\frac{d}{dC(i)}G(C(i)) & = \frac{\partial}{\partial C(i)} \int\limits_{i \in [0,1]} [C(i)]^{\frac{eta -1}{\eta}} \, di \\
& = \int\limits_{i \in [0,1]} \frac{\partial}{\partial C(i)} [C(i)]^{\frac{\eta -1}{\eta}} \, di \\
& = \int\limits_{i \in [0,1]} \left( \frac{\eta -1}{\eta} \right) [C(i)]^{\frac{\eta -1}{\eta} -1} \, di \\
& = \int\limits_{i \in [0,1]} \left( \frac{\eta -1}{\eta} \right) [C(i)]^{- \frac{1}{\eta}} \, di.
\end{align}
$$

The letter $j$ is irrelevant because the letter of integration does not matter. :) Notice that

$$\frac{\eta -1}{\eta} - 1 = \frac{\eta -1 - \eta}{\eta} = - \frac{1}{\eta}.$$

What I have done in

$$\frac{\partial}{\partial C(i)} [C(i)]^{\frac{\eta -1}{\eta}}$$

is differentiate as if it were $x^k$, where $x = C(i)$ and $k = (\eta -1)/\eta$.

Best wishes,

Fantini.
 
Hi, Fantini

Thankyou for your contribution. I didn´t realize, that you can consider $ C(i)^\frac{\eta - 1}{\eta}$ as a two-dimensional function, which is being partially differentiated.This makes sense! Thankyou.
I totally agree with you in the way you perform the differentiation (power function). In the beginning, I expected it to be that way too. But if you take a closer look at #1, you´ll notice that the derivative is outside the integral:
\[\frac{\partial}{\partial C(i)}\int_{i\in[0;1]}[C(i)]^\frac{\eta - 1}{\eta}di
=\int_{j\in[0;1]}[C(j)]^\frac{\eta - 1}{\eta}dj * \mathbf{\frac{\eta - 1}{\eta}[C(i)]^{-\frac{1}{\eta}}}
\]

Why is that so? Thus, it does make sense to me, that the author has chosen j as integration variable, in order to distinguish from the specific value i for which the differentiation takes place. But what exactly is going on when you perfom the differentiation of the integral?
 
I don't think it makes sense to simply pop it out of the integral while it still depends on $i$. I guess I'm lost like you in that respect. :confused:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top