MHB Partial differentiation of an integral

AI Thread Summary
The discussion centers on the partial differentiation of an integral involving a function C(i) and a constant η. It explains that differentiation under the integral sign allows treating C(i) as a function of two variables, enabling the application of partial differentiation. The key point is that the differentiation can be performed as if it were a power function, leading to the expression involving the integral of C(j). Participants express confusion about the differentiation process and the role of the integration variable, but ultimately clarify that the differentiation is valid despite the dependence on i. The conversation highlights the complexities of applying differentiation techniques in economic models.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Hello MHB members and friends!(Callme)

An economy student asked me, if I could explain the following partial differentiation:

\[\frac{\partial}{\partial C(i)}\int_{i\in[0;1]}[C(i)]^\frac{\eta - 1}{\eta}di
=\int_{j\in[0;1]}[C(j)]^\frac{\eta - 1}{\eta}dj\frac{\eta - 1}{\eta}[C(i)]^{-\frac{1}{\eta}}
\]

I am not sure, why the differentiation is performed as shown above ($\eta$ is a constant).

If it can be of any help in understanding the identity, the following should be added:

The function C(i) may or may not take a specific form. Whether or not, the C(i) is usually implicitly defined by the so called “felicity function”, which in this case takes the form:

$ u(C)=\frac{[C(i)]^{1-a}-1}{1-a}$, where a is a constant.

The function u(C) is a measure of the instantaneous utility a consumer has of the consumption amount C. The variable i is a time measure. The theory states, that the consumer prefers consumption instantaneously (“here and now”) instead of saving up for the future.

I presume, that the appearance of the partial derivative is a part of Lagranges optimization.

Thankyou in advance for any help in the matter. I´d also like to thank the MHB staff for a very exciting and interesting homepage!
 
Mathematics news on Phys.org
Hello (Wave) This is called differentiation under the integral sign. The notation might obscure this but I'll try to reveal it.

Although $\eta$ is a constant, you can consider $C(i)^{\frac{\eta -1}{\eta}}$ a function of two variables, that is

$$f(\eta, C(i)) = [C(i)]^{\frac{\eta -1}{\eta}}.$$

With this in mind, we can apply differentiation under the integral sign. Specifying

$$G(C(i)) = \int\limits_{i \in [0,1]} [C(i)]^{\frac{\eta -1}{\eta}} \, di$$

we have

$$
\begin{align}
\frac{d}{dC(i)}G(C(i)) & = \frac{\partial}{\partial C(i)} \int\limits_{i \in [0,1]} [C(i)]^{\frac{eta -1}{\eta}} \, di \\
& = \int\limits_{i \in [0,1]} \frac{\partial}{\partial C(i)} [C(i)]^{\frac{\eta -1}{\eta}} \, di \\
& = \int\limits_{i \in [0,1]} \left( \frac{\eta -1}{\eta} \right) [C(i)]^{\frac{\eta -1}{\eta} -1} \, di \\
& = \int\limits_{i \in [0,1]} \left( \frac{\eta -1}{\eta} \right) [C(i)]^{- \frac{1}{\eta}} \, di.
\end{align}
$$

The letter $j$ is irrelevant because the letter of integration does not matter. :) Notice that

$$\frac{\eta -1}{\eta} - 1 = \frac{\eta -1 - \eta}{\eta} = - \frac{1}{\eta}.$$

What I have done in

$$\frac{\partial}{\partial C(i)} [C(i)]^{\frac{\eta -1}{\eta}}$$

is differentiate as if it were $x^k$, where $x = C(i)$ and $k = (\eta -1)/\eta$.

Best wishes,

Fantini.
 
Hi, Fantini

Thankyou for your contribution. I didn´t realize, that you can consider $ C(i)^\frac{\eta - 1}{\eta}$ as a two-dimensional function, which is being partially differentiated.This makes sense! Thankyou.
I totally agree with you in the way you perform the differentiation (power function). In the beginning, I expected it to be that way too. But if you take a closer look at #1, you´ll notice that the derivative is outside the integral:
\[\frac{\partial}{\partial C(i)}\int_{i\in[0;1]}[C(i)]^\frac{\eta - 1}{\eta}di
=\int_{j\in[0;1]}[C(j)]^\frac{\eta - 1}{\eta}dj * \mathbf{\frac{\eta - 1}{\eta}[C(i)]^{-\frac{1}{\eta}}}
\]

Why is that so? Thus, it does make sense to me, that the author has chosen j as integration variable, in order to distinguish from the specific value i for which the differentiation takes place. But what exactly is going on when you perfom the differentiation of the integral?
 
I don't think it makes sense to simply pop it out of the integral while it still depends on $i$. I guess I'm lost like you in that respect. :confused:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top