MHB Partial differentiation of an integral

Click For Summary
The discussion centers on the partial differentiation of an integral involving a function C(i) and a constant η. It explains that differentiation under the integral sign allows treating C(i) as a function of two variables, enabling the application of partial differentiation. The key point is that the differentiation can be performed as if it were a power function, leading to the expression involving the integral of C(j). Participants express confusion about the differentiation process and the role of the integration variable, but ultimately clarify that the differentiation is valid despite the dependence on i. The conversation highlights the complexities of applying differentiation techniques in economic models.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Hello MHB members and friends!(Callme)

An economy student asked me, if I could explain the following partial differentiation:

\[\frac{\partial}{\partial C(i)}\int_{i\in[0;1]}[C(i)]^\frac{\eta - 1}{\eta}di
=\int_{j\in[0;1]}[C(j)]^\frac{\eta - 1}{\eta}dj\frac{\eta - 1}{\eta}[C(i)]^{-\frac{1}{\eta}}
\]

I am not sure, why the differentiation is performed as shown above ($\eta$ is a constant).

If it can be of any help in understanding the identity, the following should be added:

The function C(i) may or may not take a specific form. Whether or not, the C(i) is usually implicitly defined by the so called “felicity function”, which in this case takes the form:

$ u(C)=\frac{[C(i)]^{1-a}-1}{1-a}$, where a is a constant.

The function u(C) is a measure of the instantaneous utility a consumer has of the consumption amount C. The variable i is a time measure. The theory states, that the consumer prefers consumption instantaneously (“here and now”) instead of saving up for the future.

I presume, that the appearance of the partial derivative is a part of Lagranges optimization.

Thankyou in advance for any help in the matter. I´d also like to thank the MHB staff for a very exciting and interesting homepage!
 
Mathematics news on Phys.org
Hello (Wave) This is called differentiation under the integral sign. The notation might obscure this but I'll try to reveal it.

Although $\eta$ is a constant, you can consider $C(i)^{\frac{\eta -1}{\eta}}$ a function of two variables, that is

$$f(\eta, C(i)) = [C(i)]^{\frac{\eta -1}{\eta}}.$$

With this in mind, we can apply differentiation under the integral sign. Specifying

$$G(C(i)) = \int\limits_{i \in [0,1]} [C(i)]^{\frac{\eta -1}{\eta}} \, di$$

we have

$$
\begin{align}
\frac{d}{dC(i)}G(C(i)) & = \frac{\partial}{\partial C(i)} \int\limits_{i \in [0,1]} [C(i)]^{\frac{eta -1}{\eta}} \, di \\
& = \int\limits_{i \in [0,1]} \frac{\partial}{\partial C(i)} [C(i)]^{\frac{\eta -1}{\eta}} \, di \\
& = \int\limits_{i \in [0,1]} \left( \frac{\eta -1}{\eta} \right) [C(i)]^{\frac{\eta -1}{\eta} -1} \, di \\
& = \int\limits_{i \in [0,1]} \left( \frac{\eta -1}{\eta} \right) [C(i)]^{- \frac{1}{\eta}} \, di.
\end{align}
$$

The letter $j$ is irrelevant because the letter of integration does not matter. :) Notice that

$$\frac{\eta -1}{\eta} - 1 = \frac{\eta -1 - \eta}{\eta} = - \frac{1}{\eta}.$$

What I have done in

$$\frac{\partial}{\partial C(i)} [C(i)]^{\frac{\eta -1}{\eta}}$$

is differentiate as if it were $x^k$, where $x = C(i)$ and $k = (\eta -1)/\eta$.

Best wishes,

Fantini.
 
Hi, Fantini

Thankyou for your contribution. I didn´t realize, that you can consider $ C(i)^\frac{\eta - 1}{\eta}$ as a two-dimensional function, which is being partially differentiated.This makes sense! Thankyou.
I totally agree with you in the way you perform the differentiation (power function). In the beginning, I expected it to be that way too. But if you take a closer look at #1, you´ll notice that the derivative is outside the integral:
\[\frac{\partial}{\partial C(i)}\int_{i\in[0;1]}[C(i)]^\frac{\eta - 1}{\eta}di
=\int_{j\in[0;1]}[C(j)]^\frac{\eta - 1}{\eta}dj * \mathbf{\frac{\eta - 1}{\eta}[C(i)]^{-\frac{1}{\eta}}}
\]

Why is that so? Thus, it does make sense to me, that the author has chosen j as integration variable, in order to distinguish from the specific value i for which the differentiation takes place. But what exactly is going on when you perfom the differentiation of the integral?
 
I don't think it makes sense to simply pop it out of the integral while it still depends on $i$. I guess I'm lost like you in that respect. :confused:
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
0
Views
804
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
3
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K