Partial Fraction Expansion - Repeated Roots Case

  • #1

Homework Statement



Find Partial Fraction Expansion

10/[s (s+2)(s+3)^2]

Homework Equations




The Attempt at a Solution



10/[s (s+2)(s+3)^2] = A/s + B/(s+2) + C/(s+3)^2 + D/(s+3)

A = 10/[(s+2)(s+3)^2], s approaches 0 = 10/(2*3^2) = 5/9

B = 10/[s (s+3)^2], s approaches -2 = 10/(-2) = -5

C = 10/[s (s+2)], s approaches -3 = 10/[(-3)(-3+2)] = 10/[(-3)(-1)] = 10/3

For D,
First I find the equation that isolated C by multiply both sides by (s+3)^2

10/[s (s+2)] = [A(s+3)^2]/s + [B(s+3)^2]/(s+2) + C + D(s+3)

I then differentiate both sides with respect to s to find D? I have solved similar problems before with three terms, one repeated root, and to find the last constant I had to something similar to above and then differentiate both sides, but that doesn't seem to work in this case with four terms, one repeated root.

Any help would be appreciated thanks.
 
  • #2

Homework Statement



Find Partial Fraction Expansion
10/[s (s+2)(s+3)^2]

Homework Equations


3. The Attempt at a Solution [/B]
10/[s (s+2)(s+3)^2] = A/s + B/(s+2) + C/(s+3)^2 + D/(s+3)

A = 10/[(s+2)(s+3)^2], s approaches 0 = 10/(2*3^2) = 5/9

B = 10/[s (s+3)^2], s approaches -2 = 10/(-2) = -5

C = 10/[s (s+2)], s approaches -3 = 10/[(-3)(-3+2)] = 10/[(-3)(-1)] = 10/3
That all looks fine.
For D,
First I find the equation that isolated C by multiply both sides by (s+3)^2

10/[s (s+2)] = [A(s+3)^2]/s + [B(s+3)^2]/(s+2) + C + D(s+3)

I then differentiate both sides with respect to s to find D? I have solved similar problems before with three terms, one repeated root, and to find the last constant I had to something similar to above and then differentiate both sides, but that doesn't seem to work in this case with four terms, one repeated root.

Any help would be appreciated thanks.
Now to find a value for D: Substitute some number for s, ##\ \text s = -1\ ## works well, then using your values for A, B, and C, solve for D.
 

Suggested for: Partial Fraction Expansion - Repeated Roots Case

Replies
3
Views
543
Replies
4
Views
371
Replies
9
Views
363
Replies
6
Views
361
Replies
17
Views
2K
Replies
11
Views
170
Replies
21
Views
587
Replies
15
Views
656
Replies
3
Views
1K
Back
Top