MHB Partial Order Relation on Positive Rational Numbers and Numbers Greater Than 1/2

  • Thread starter Thread starter sbrajagopal2690
  • Start date Start date
  • Tags Tags
    Functions Relations
Click For Summary
The discussion focuses on the relation r defined on the set of positive rational numbers Q+, where (x,y) ∈ r if x/y is an integer. Participants are tasked with demonstrating that r is a partial order by proving reflexivity, antisymmetry, and transitivity. Additionally, they need to identify all positive rational numbers greater than 1/2 within this relation. A suggestion is made to analyze the fraction p/q, where p and q are coprime, to derive insights about their relationship when greater than 1/2. The conversation emphasizes the mathematical properties of the relation and the implications for identifying specific rational numbers.
sbrajagopal2690
Messages
2
Reaction score
0
need help on this ..any suggestions are highly appreciatedConsider the set of positive rational numbers Q+ . Consider the relation r defined by
(x,y) ∈ r<=> x/y ∈ Z. Show that r is a partial order and determine all numbers greater than 1/2.
 
Physics news on Phys.org
Re: relations and functions

sbrajagopal2690 said:
Consider the set of positive rational numbers Q+ . Consider the relation r defined by (x,y) ∈ r<=> x/y ∈ Z. Show that r is a partial order and determine all numbers greater than 1/2.
You must show that this relation is
a R a (reflexivity) for all;
if a R b and b R a then a = b (antisymmetry);
if a R b and R ≤ c then a R c (transitivity).

I have no idea what "determine all numbers greater than 1/2" could mean?
 
sbrajagopal2690 said:
... determine all numbers greater than 1/2.
Suppose that $p/q$ is greater than $1/2$ in this ordering (where $p/q$ is a fraction in its reduced form, so that $p$ and $q$ have no common factors other than $1$). Then $\left.\frac12\middle/\frac pq\right.$ is an integer. Simplify that compound fraction and see what that tells you about $p$ and $q$.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
13
Views
2K
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K