MHB Partial Order Relation on Positive Rational Numbers and Numbers Greater Than 1/2

  • Thread starter Thread starter sbrajagopal2690
  • Start date Start date
  • Tags Tags
    Functions Relations
Click For Summary
The discussion focuses on the relation r defined on the set of positive rational numbers Q+, where (x,y) ∈ r if x/y is an integer. Participants are tasked with demonstrating that r is a partial order by proving reflexivity, antisymmetry, and transitivity. Additionally, they need to identify all positive rational numbers greater than 1/2 within this relation. A suggestion is made to analyze the fraction p/q, where p and q are coprime, to derive insights about their relationship when greater than 1/2. The conversation emphasizes the mathematical properties of the relation and the implications for identifying specific rational numbers.
sbrajagopal2690
Messages
2
Reaction score
0
need help on this ..any suggestions are highly appreciatedConsider the set of positive rational numbers Q+ . Consider the relation r defined by
(x,y) ∈ r<=> x/y ∈ Z. Show that r is a partial order and determine all numbers greater than 1/2.
 
Physics news on Phys.org
Re: relations and functions

sbrajagopal2690 said:
Consider the set of positive rational numbers Q+ . Consider the relation r defined by (x,y) ∈ r<=> x/y ∈ Z. Show that r is a partial order and determine all numbers greater than 1/2.
You must show that this relation is
a R a (reflexivity) for all;
if a R b and b R a then a = b (antisymmetry);
if a R b and R ≤ c then a R c (transitivity).

I have no idea what "determine all numbers greater than 1/2" could mean?
 
sbrajagopal2690 said:
... determine all numbers greater than 1/2.
Suppose that $p/q$ is greater than $1/2$ in this ordering (where $p/q$ is a fraction in its reduced form, so that $p$ and $q$ have no common factors other than $1$). Then $\left.\frac12\middle/\frac pq\right.$ is an integer. Simplify that compound fraction and see what that tells you about $p$ and $q$.
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K