Particle on a ring (components in the postion basis)

Click For Summary

Homework Help Overview

The discussion revolves around a quantum mechanics problem involving a particle on a ring, specifically focusing on the position and momentum representations of the wave function. Participants are examining the implications of the wave function's form and the probabilities associated with the particle's location.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the structure of the wave function and its implications for the particle's position. Questions arise regarding the significance of specific locations on the ring and the interpretation of probabilities when the wave function collapses to an eigenstate of the momentum operator.

Discussion Status

The discussion is active, with participants providing feedback and suggestions on mathematical expressions and notation. Some participants have made progress in their calculations, while others are still questioning the underlying assumptions and interpretations of their results.

Contextual Notes

There are mentions of potential confusion regarding summation indices and the range of values for the momentum quantum number. Participants are also considering the implications of the uncertainty principle in relation to the particle's position on the ring.

Lambda96
Messages
233
Reaction score
77
Homework Statement
see screenshots
Relevant Equations
none
Hi,

I have problems with the task part b and g

To solve the task, we have received the following information

Bildschirmfoto 2023-06-14 um 19.14.36.png


Task b
Bildschirmfoto 2023-06-14 um 20.03.21.png


First, I wrote down what the state ##\psi## looks like

$$\psi=\frac{1}{\sqrt{N}} \sum\limits_{k}^{} \psi_k$$
$$\psi=\frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$

Then I to calculate ##\psi^j=\braket{\vec{e}_j|\psi}##.

$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$

$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{N} \sum\limits_{k}^{} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$
Now I unfortunately do not know how to proceed further. But I don't understand, if all momentums are equally probable, why the particle should be 100% at location N and not at other locations like 1 and 2 and so on. What makes the point N so special that the particle should be there in contrast to the other points?

To solve task g, we have received the following information
Bildschirmfoto 2023-06-14 um 19.25.16.png


Task g
Bildschirmfoto 2023-06-14 um 19.15.43.png

If I understood the task correctly, then the wave function is collapsed, to the eigenvector of the momentum operator, more precisely to ##\psi_0##. The wave function has with 100% the eigenvalue of ##\psi_0## after the uncertainty principle, the uncertainty would have to become extremely large concerning the position, which means that the particle can be everywhere on the ring and thus the probability for each position is equally large.
 
Last edited:
Physics news on Phys.org
Lambda96 said:
$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{j}^{} e^{ikaj} \vec{e}_j$$
In the second sum on the right, you should change the summation index ##j## to some other symbol so that the summation index is not confused with the ##j## in ##\vec{e}_j^{\dagger}##. For example, you could write $$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{l}^{} e^{ikal} \vec{e}_l$$
 
  • Like
Likes   Reactions: Lambda96
Thanks TSny for your help 👍, I have now changed the index of the summation from ##j## to ##l## and have now calculated the following.

$$\braket{\vec{e}_j|\psi}=\vec{e}_j^{\dagger} \cdot \frac{1}{\sqrt{N}} \sum\limits_{k}^{} \frac{1}{\sqrt{N}} \sum\limits_{l}^{} e^{ikal} \vec{e}_l$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} \sum\limits_{l}^{} e^{ikal} \vec{e}_j^{\dagger} \cdot \vec{e}_l$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} \sum\limits_{l}^{} e^{ikal} \delta_{jl}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} e^{ika} \delta_{j1}+e^{2ika} \delta_{j2}+ \ldots +e^{Nika} \delta_{jN}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \Bigl( e^{ia} \delta_{j1}+e^{2ia} \delta_{j2}+ \ldots +e^{Nia} \delta_{jN}+e^{2a} \delta_{j1}+e^{4ia} \delta_{j2}+ \ldots +e^{2Nia} \delta_{jN}+ \ldots + e^{Nia} \delta_{j1}+e^{2Nia} \delta_{j2}+ \ldots +e^{N^2ika} \delta_{jN} \Bigr)$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \Bigl(\Bigl(e^{ia}+e^{2a} +\ldots+e^{Nia} \Bigr) \delta_{j1}+\Bigl( e^{2ia}+e^{4ia}+ \ldots +e^{2Nia} \Bigr)\delta_{j2}+ \ldots + \Bigl( e^{Nia}+e^{2Nia} + \ldots +e^{N^2ika} \Bigr)\delta_{jN}\Bigr)$$

Now I'm stuck 🙃

The individual entries in the brackets look almost like states ##\vec{\psi}_k##, i.e.

$$\braket{\vec{e}_j|\psi}=\frac{1}{\sqrt{N}} \Bigl(\frac{1}{\sqrt{N}} \Bigl(e^{ia}+e^{2a} +\ldots+e^{Nia} \Bigr) \delta_{j1}+\frac{1}{\sqrt{N}} \Bigl( e^{2ia}+e^{4ia}+ \ldots +e^{2Nia} \Bigr)\delta_{j2}+ \ldots + \frac{1}{\sqrt{N}} \Bigl( e^{Nia}+e^{2Nia} + \ldots +e^{N^2ika} \Bigr)\delta_{jN}\Bigr)$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{\sqrt{N}} \Bigl(\vec{\psi}_1 \delta_{j1}+\vec{\psi}_2 \delta_{j2}+ \ldots + \vec{\psi}_N \delta_{jN}\Bigr)$$

Now does it mean that if, for example, ##\vec{e}_j=\vec{e}_2##, that only the state ##\braket{\vec{e}_2|\psi}=\frac{1}{\sqrt{N}} \Bigl(\vec{\psi}_2 \delta_{22}\Bigr)## remains and the particle is at location 2?
 
Lambda96 said:
$$\braket{\vec{e}_j|\psi}=\frac{1}{N} \sum\limits_{k}^{} \sum\limits_{l}^{} e^{ikal} \delta_{jl}$$
Good. Consider the sum $$ \sum\limits_{l}^{} e^{ikal} \delta_{jl}$$Since ##\delta_{jl}## equals zero for any ##l \neq j##, all of the terms in the summation are zero except for one term. So, the sum reduces to one term that can be written in terms of ##k##, ##a##, and ##j##.
 
  • Like
Likes   Reactions: Lambda96 and vanhees71
Thanks TSny for your help 👍👍

Then I can write the term as follows

$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} \sum\limits_{l}^{}e^{ikal} \delta_{jl}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\Bigl( e^{iaj}+e^{2iaj}+e^{3iaj}+ \ldots +e^{Niaj} \Bigr)$$
 
Lambda96 said:
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} \sum\limits_{l}^{}e^{ikal} \delta_{jl}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$
$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\Bigl( e^{iaj}+e^{2iaj}+e^{3iaj}+ \ldots +e^{Niaj} \Bigr)$$
Good, except the sum over ##k## does not go from ##k = 1## to ##k = N##. Recall that the values of ##k## are ##k = 2\pi n /L## for ##n = 0, 1, 2, ... , N-1##.
 
  • Like
Likes   Reactions: Lambda96 and SammyS
Thanks again for your help TSny👍👍 👍, also thanks for the hint with the index ##k## 👍

Could I then write the second line as follows?$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{n=0}^{N-1} e^{\frac{2i \pi n a j}{L}}$$
 
Lambda96 said:
Thanks again for your help TSny👍👍 👍, also thanks for the hint with the index ##k## 👍

Could I then write the second line as follows?$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{k}^{} e^{ikaj}$$

$$\braket{\vec{e}_j|\psi}=\frac{1}{N}\sum\limits_{n=0}^{N-1} e^{\frac{2i \pi n a j}{L}}$$
Yes, that looks right.
 
  • Like
Likes   Reactions: Lambda96
Thanks for your help TSny 👍👍👍
 
  • #10
You’re very welcome.
 
  • Like
Likes   Reactions: Lambda96

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K