1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Work Energy Theorem: particle, system of particles, rigid body

Tags:
  1. Aug 13, 2017 #1
    • Moved from a technical forum, so homework template missing
    Question: A) Derive the work - energy theorem for one particle.
    B) Check whether it is applicable for a system of particles and a rigid body


    Work - energy theorem for one particle system,
    total sum of work done by individual forces = work done by total force
    To show the above equality,
    let's say that there acts n forces on a particle and the net displacement of the particle is from ## \vec s_i ## to ## \vec s_f##.
    Then , total sum of work done by individual forces = ## Σ_{i =1} ^n W_i = Σ_{i =1} ^n \int _ {\vec s_i } ^ {\vec s_f} \vec F_i . d\, \vec s ##
    ## = \int _ {\vec s_i } ^ {\vec s_f} \{Σ_{i =1} ^n \vec F_i\} . d\, \vec s ##
    ## \vec F_{net} = Σ_{i =1} ^n \vec F_i ##
    So, total sum of work done by individual forces = ## \int _ {\vec s_i } ^ {\vec s_f} \vec F_{net} . d\, \vec s ## = work done by total force


    Now, the work energy theorem says ,
    The total work done on a particle by net force is equal to change in its kinetic energy provided that the mass of the particle remains constant.

    ## W = \int _ {\vec s_i } ^ {\vec s_f} \vec F_{net} . d\, \vec s = \int _ {t_i } ^ {t_f} m \frac {d \vec v } {dt} . \vec v d\, t ##
    ## = \int _ {v_i } ^ {v_f} m \frac 1 2 d\, v^2 = ## ## \frac 1 2 m v_f ^2 - \frac 1 2 m v_i ^2 ## = change in kinetic energy


    For a system of particles,
    Let's say that the work - energy theorem holds for tha j_th particle,
    ##W_j = ( K_f)_j - (K_i) _j##
    For n - particles ,
    ##Σ_{ j = 1} ^n W_j = Σ_ {j = 1} ^n ( K_f)_j - Σ_{ j = 1} ^n (K_i) _j ##

    So, the sum of work done on all particles = sum of change in kinetic energy of all particles
    ⇒ work done on a system of particles = change in kinetic energy of the system of particles
    where, work done on a system of particles ≡ sum of work done on each individual particle
    kinetic energy of the system of particles ≡ sum of kinetic energy of each individual particle

    Now, a rigid body is nothing but a special case of a system of particles, so what is valid for a system of particles is valid for a rigid body.

    Here, I feel tempted to use the same analogy for a system of particles, too.
    Can I say that what is valid for a single particle is valid for a system of particles and so, is valid for a rigid body, but not the vice - versa?

    So, the answer to B is " yes".
    Are the above arguments correct?
     
  2. jcsd
  3. Aug 14, 2017 #2

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    You need to make a distinction between internal and external forces for a system of particles and for a rigid body.

    Consider a one-dimensional system with two masses connected by a spring, and you apply force F to one mass and -F to the other. What's ##F_\text{net}## for the system? Will there be work done on the system? What's the change in kinetic energy of the system?
     
  4. Aug 14, 2017 #3
    Both the net external force and the net force (including both external and internal forces ) is 0.
    Yes. work done by the internal forces is 0 as the work done by the spring force on the two masses gets canceled by the work done on the spring due to the forces by the two masses.
    Work done by the external forces is nonzero.

    This means that in case of a system of particles, even if the total force or total external force acting on the system is 0, the work done on the system may not be 0.
    Sum of work done on the system by each force
    So, work - kinetic energy theorem is valid here.
    I didn't get the need of the following advice:
     
  5. Aug 14, 2017 #4

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    So you apply the pair of forces for a short time, allowing the system to get stretched out, and then turn it off. There was no net force on the system, so ##\int \vec{F}_\text{net}\cdot d\vec{s} = 0##, yet the masses will subsequently move so ##\Delta K_1 + \Delta K_2 \ne 0##.
     
  6. Aug 14, 2017 #5
    But this doesn't tell me why I should distinct between internal and external forces. I want to know how this distinction helps us.
    By the way, if there is no damping force acting on the system, the system will continue oscillating forever. So, the fact that we can't generate perpetual motion is due to the existence of damping force in nature. Right?
    If atoms oscillate perpetually, does this mean that the net force acting on it is not damping?
     
  7. Aug 14, 2017 #6

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    What I was trying to get at, though not very clearly, is that the net force on a system of particles is a force that's external to the system, but in your analysis, you looked at the forces on individual particles, which is a combination of internal and external forces.

    Yup.

    Yup.
     
  8. Aug 15, 2017 #7
    So, you mean that in standard convention, by " net force ", "net external force " is meant. So, I should distinct the forces into internal and external forces. I will consider this point from next time.

    I think in work -energy theorem, we need to consider both external and internal forces. Right?
     
    Last edited: Aug 15, 2017
  9. Aug 15, 2017 #8

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yes. In particular, there is something that has to do with Newton's third for internal forces.
    In post #2, Vela introduced a nasty kind of external forces; other kinds are forces that work on the system as a whole (all the same F), or a force like gravity (all the same g).
     
  10. Aug 15, 2017 #9
    Because of the Newton's 3rd Law, the net internal forces acting on the system of particles is 0. But the net work-done by the internal forces i.e. the sum of the work done by each internal force may not be 0 .
    Hence, work - kinetic energy theorem for a system off particles: net work done on the system = sum of work done by each of both internal and external forces = change in the total kinetic energy of the system

    Is there any easy way to figure out whether the work done by internal forces is zero?
    I think if the internal forces is electromagnetic or gravitational , the work done by the internal force is not zero.
    Generalizing it , if the internal forces are central forces, work-done by them may not be 0.
    Since, the forces in action - reaction pair act on different bodies, and the different bodies could have different mass and so different displacement, the work-done may not be 0.
    In case of rigid bodies the problem gets simplified, in the sense that the work done by the internal forces is 0.
     
  11. Aug 16, 2017 #10

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    How are you defining the kinetic energy of the system? When you talk about the kinetic energy of, say, a ball, you don't typically include the thermal energy.
     
  12. Aug 16, 2017 #11
    I am talking here about a system of particles. So, K. E. of the system here will be sum of kinetic energy of all particles.
    That depends whether you consider a ball as a system of particles or a rigid- body.
    Considering it as a system of particles, you have to include thermal energy.
    Considering it as a rigid body, thermal energy is 0 as each constituent particle of the system is fixed under rigid body approximation.
     
  13. Aug 16, 2017 #12

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Focus on the center of mass of a system of particles, see if at least that gives you a work/energy relationship
     
  14. Aug 16, 2017 #13
    The net force acting on the center of mass is net external force acting on the system of particles .With this COM is essentially a one particle system and so, work kinetic energy theorem will be applicable here.
    But, we can reduce a system of particles to a COM - one particle system for applying work- kinetic energy theorem only if the change in kinetic energy of the system of particles due to internal interactions is 0. Isn't it so?
     
  15. Aug 16, 2017 #14

    vela

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Education Advisor

    I think the point of the problem is for you to show whether or not you can treat the COM of a system as a single particle.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Work Energy Theorem: particle, system of particles, rigid body
  1. Energy of a particle (Replies: 3)

  2. Particle Energy (Replies: 1)

Loading...