What Is the Correct Partition Function for a Spin System?

happyparticle
Messages
490
Reaction score
24
Homework Statement
Consider a spin i, integer or half integer with the states n = -i, -(i-1),..(i-1), i
Z component of the spin is ##S_z = n\hbar## and the energy eigenvalues of this system in a magnetic field are given by: ##E_n = nh##
Find the partition function in term of 2 sinh ratio
Relevant Equations
##Z = \sum_{-i}^{i} = e^{-E_n \beta}##
##Z = \sum_{-i}^{i} = e^{-E_n \beta}##

##Z = \sum_{0}^j e^{nh\beta} + \sum_{0}^j e^{-nh\beta}##
Those sums are 2 finites geometric series
##Z = \frac{1- e^{h\beta(i+1)}}{1-e^{h\beta}} + \frac{1-e^{-h\beta(i+1)}}{1-e^{-h\beta}}##
I don't think this is ring since from that I can't get 2 sinh. However, I'm not sure where is my error.
 
Physics news on Phys.org
Note that you've included ##n=0## twice!
 
  • Like
Likes happyparticle and Orodruin
happyparticle said:
I don't think this is ring since from that I can't get 2 sinh. However, I'm not sure where is my error.
This might help: ##1-e^x = e^{x/2}(e^{-x/2}-e^{x/2})##.
 
Thank you! I didn't see that I had included n=0 twice.
I spent hours trying to figure out what was wrong.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top