I am trying to calculate the functional for real scalar field:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

W[J] = \int \mathcal{D} \phi \: exp \left[{ \int \frac{d^4 p}{(2 \pi)^4}[ \frac{1}{2} \tilde{\phi}(-p) i (p^2 - m^2 +i \epsilon) \tilde{\phi}(p)} +\tilde{J}(-p) \tilde{\phi}(p)] \right]

[/tex]

Using this gaussian formula:

[tex] \int_{-\infty}^\infty \prod_{i=1}^N dy_i \: exp \left[ -\frac{1}{2} \sum_{i,j=1}^N y_i A_{ij} y_j + \sum_{i=1}^Ny_i z_i \right]= (2 \pi)^{N/2} (\mathrm{det} A)^{-1/2} exp \left[\frac{1}{2} \sum_{i,j=1}^N z_i (A^{-1})_{ij} z_j \right]

[/tex]

I have to discretise the p integration and then perform the integration over phi but i am unable to recover the right sign of J.

I can'r get:

[tex]

W[J] = W[0] \: exp \left[ \frac{1}{2} \int \frac{d^4 p}{(2 \pi)^4} \tilde{J}(-p) \tilde{D}(p) \tilde{J}(p) \right]

[/tex]

Any help?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Path integral and gaussian integral

**Physics Forums | Science Articles, Homework Help, Discussion**