A Path Integral Approach To Derive The KG Propagator

Click For Summary
The discussion centers on clarifying the path integral approach to deriving the Klein-Gordon propagator, specifically addressing confusion around a line in the lecturer's notes. The main issue involves understanding how to obtain the desired Dirac delta function from the integration process, particularly in equation (6.9). Participants suggest replacing the current source and field variables with their Fourier transforms, which should yield the necessary delta function. Additionally, they emphasize the importance of correctly handling the integration variables and the inclusion of the i0+ term in the propagator expression. The conversation highlights the need for precision in specifying the propagator being calculated to avoid nonsensical results.
Woolyabyss
Messages
142
Reaction score
1
I'm having trouble understanding a specific line in my lecturers notes about the path integral approach to deriving the Klein Gordon propagator. I've attached the notes as an image to this post. In particular my main issue comes with (6.9). I can see that at some point he integrates over x to get a Dirac delta, which is how he gets the minus p's. I'm just not certain how he gets the desired dirac dellta function to make this expression? When I do the calculation I end up with 𝛿 (2p). Any help would be appreciated.
 

Attachments

  • path.png
    path.png
    58 KB · Views: 394
Physics news on Phys.org
Try to replace the current ##J## and the field ##\phi## by the Fourier transforms in 6.8 (use separate momentum space variables). You should get the delta you need.

Same for the kinetic term.

Then for the source term, remember the fields are real valued.
 
When you plug in the right-hand side of the 2nd equation in (6.8) for ##\phi(x)##, you need to use two different dummy integration 4-momenta for each of the two factors of ##\phi(x)## in each term; call these ##p## and ##p'##. Then when doing the ##d^4x## integral, you will get ##(2\pi)^4\delta^4(p+p')##.

Also, note that there should be a factor of ##i## before the ##\int J\phi## term on the left-hand side of (6.9).
 
Thanks for the replies, I've managed to get out (p^2 -m ) term of (6.9) but am still unsure for the second term. It appears as though its being split in two and they are flipping the momentum variables, But why?
 
One should note that (6.10) misses completely the most important point about this entire calculation. It's a nonsensensical expression. You have to specify the propagator you want to calculate, and both operator perturbation theory as well as the path-integral approach show that you need the Feynman propagator here, i.e.,
$$\Delta(p)=\frac{1}{p^2-m^2+\mathrm{i} 0^+}.$$
The crucial point is the ##\mathrm{i} 0^+## term here.

For its derivation in non-relativistic first-quantization path integrals see Sect. 1.10 in

https://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf
The derivation for the QFT case is completely analogous to this.
 
  • Like
Likes DarMM
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
33
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
6K