A Path Integral Approach To Derive The KG Propagator

Click For Summary
The discussion centers on clarifying the path integral approach to deriving the Klein-Gordon propagator, specifically addressing confusion around a line in the lecturer's notes. The main issue involves understanding how to obtain the desired Dirac delta function from the integration process, particularly in equation (6.9). Participants suggest replacing the current source and field variables with their Fourier transforms, which should yield the necessary delta function. Additionally, they emphasize the importance of correctly handling the integration variables and the inclusion of the i0+ term in the propagator expression. The conversation highlights the need for precision in specifying the propagator being calculated to avoid nonsensical results.
Woolyabyss
Messages
142
Reaction score
1
I'm having trouble understanding a specific line in my lecturers notes about the path integral approach to deriving the Klein Gordon propagator. I've attached the notes as an image to this post. In particular my main issue comes with (6.9). I can see that at some point he integrates over x to get a Dirac delta, which is how he gets the minus p's. I'm just not certain how he gets the desired dirac dellta function to make this expression? When I do the calculation I end up with 𝛿 (2p). Any help would be appreciated.
 

Attachments

  • path.png
    path.png
    58 KB · Views: 391
Physics news on Phys.org
Try to replace the current ##J## and the field ##\phi## by the Fourier transforms in 6.8 (use separate momentum space variables). You should get the delta you need.

Same for the kinetic term.

Then for the source term, remember the fields are real valued.
 
When you plug in the right-hand side of the 2nd equation in (6.8) for ##\phi(x)##, you need to use two different dummy integration 4-momenta for each of the two factors of ##\phi(x)## in each term; call these ##p## and ##p'##. Then when doing the ##d^4x## integral, you will get ##(2\pi)^4\delta^4(p+p')##.

Also, note that there should be a factor of ##i## before the ##\int J\phi## term on the left-hand side of (6.9).
 
Thanks for the replies, I've managed to get out (p^2 -m ) term of (6.9) but am still unsure for the second term. It appears as though its being split in two and they are flipping the momentum variables, But why?
 
One should note that (6.10) misses completely the most important point about this entire calculation. It's a nonsensensical expression. You have to specify the propagator you want to calculate, and both operator perturbation theory as well as the path-integral approach show that you need the Feynman propagator here, i.e.,
$$\Delta(p)=\frac{1}{p^2-m^2+\mathrm{i} 0^+}.$$
The crucial point is the ##\mathrm{i} 0^+## term here.

For its derivation in non-relativistic first-quantization path integrals see Sect. 1.10 in

https://th.physik.uni-frankfurt.de/~hees/publ/lect.pdf
The derivation for the QFT case is completely analogous to this.
 
  • Like
Likes DarMM
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
First, I need to check that I have the 3 notations correct for an inner product in finite vector spaces over a complex field; v* means: given the isomorphism V to V* then: (a) physicists and others: (u,v)=v*u ; linear in the second argument (b) some mathematicians: (u,v)=u*v; linear in the first argument. (c) bra-ket: <v|u>= (u,v) from (a), so v*u . <v|u> is linear in the second argument. If these are correct, then it would seem that <v|u> being linear in the second...