I PDEs greater than order 2 with real world applications?

BWV
Messages
1,592
Reaction score
1,952
Came across this today, a fourth order PDE - the Kuramoto–Sivashinsky equation, apparently used to model flames

1634249292980.png
https://en.wikipedia.org/wiki/Kuramoto–Sivashinsky_equation

Any other examples of high order PDEs with actual applications?

amoto%E2%80%93Sivashinsky_spatiotemporal_evolution.png
 
Physics news on Phys.org
Another example is one dimensional transverse waves on a uniform slender beam, which satisfy ## u_{xxxx} + a^2 \, u_{tt} = 0 ##. This is a special case of the Euler-Bernoulli equation
https://en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 23 ·
Replies
23
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K