Percentages of success in basketball

  • Context: MHB 
  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Basketball
Click For Summary
SUMMARY

The discussion centers on the probability of a basketball player achieving an exact shooting percentage of 80% during a game. It is established that if a player scores less than 80% at one point and more than 80% at the end, it is necessary for the player to have achieved exactly 80% at some point during the game. The proof involves analyzing the player's success rate as a sequence of fractions, demonstrating that the conditions of the problem guarantee the existence of an index where the success rate equals 80%.

PREREQUISITES
  • Understanding of basic probability concepts
  • Familiarity with fractions and percentages
  • Knowledge of sequences and mathematical proofs
  • Ability to analyze mathematical inequalities
NEXT STEPS
  • Study the concept of limits in sequences to understand continuity in probability
  • Learn about mathematical induction as a proof technique
  • Explore the implications of the Intermediate Value Theorem in discrete settings
  • Investigate real-world applications of probability in sports analytics
USEFUL FOR

Mathematicians, statisticians, sports analysts, and anyone interested in the application of probability theory in real-world scenarios, particularly in sports performance analysis.

Yankel
Messages
390
Reaction score
0
Hello all,

I wasn't sure if this question should be placed here or on algebra forum, but it is related to probability, so I put it here.

A basketball player shoots several times during some time period in a game, and scores less than 80% of his shots (let's say after the first quarter, but the time doesn't really matters). At the end of the game, he scored more than 80% of his shots. Is it necessary that at some point during the game, his success was exactly 80% ?

My intuition say that the answer is no, because this is not a continuous function, but every example I tried setting up, showed that 80% was achieved. What do you think ?
 
Physics news on Phys.org
Yankel said:
Hello all,

I wasn't sure if this question should be placed here or on algebra forum, but it is related to probability, so I put it here.

A basketball player shoots several times during some time period in a game, and scores less than 80% of his shots (let's say after the first quarter, but the time doesn't really matters). At the end of the game, he scored more than 80% of his shots. Is it necessary that at some point during the game, his success was exactly 80% ?

My intuition say that the answer is no, because this is not a continuous function, but every example I tried setting up, showed that 80% was achieved. What do you think ?

Your correct that the answer is no. In terms of finding an example to show this the easiest way is to find some fraction that is greater than and not equal to 80% where subtracting one from the numerator and one from the denominator is less than and not equal to 80%. In other words find a fraction such that making the last shot pushes them over 80% success and that before making the last shot they had less than 80% success.

Find an x,y such that
$$\frac{x}{y} > 80%$$ and
$$\frac{x-1}{y-1} < 80%$$
 
Actually, I think the claim is true. First, I tried some elementary examples and they appeared to be true so my intuition was that the claim should be true. Suppose that he shots $n$ times during the game, then each time he shots we can compute his succes rate. The game starts and he shots ... he scores, then his succes rate at that time is $1/1 = 100\%$. Suppose he shots again after a few minutes but misses then his succes rate is now $1/2 = 50\%$. So in fact, you can represent the game as a finite sequence
$$\left(\frac{a_i}{i}\right)_{i=1}^{n},$$
where the $a_i's$ are increasing by one but not necessarily each consecutive term.

Statement
The question can then be reformulated as: given that $a_n/n > (4/5)$ and at some point in the game $a_j/j < (4/5)$ for $j<n$. Does this imply that there exists an index $k$ such that $a_k /k = 0.8$ where $j<k<n$?

Proof
​The answer is yes. We have given $\displaystyle \frac{a_n}{n} > \frac{4}{5} > \frac{a_j}{j}$. Hence, $5a_n>4n$ and $5a_j < 4j$. Let $b_k=5a_k-4k$. As $a_{k+1}$ is either $a_k$ or $a_k+1$, we have $$b_{k+1}=5a_{k+1}-4k-4=\begin{cases}5a_k-4k-4&=b_k-4\quad \text{ or}\\5(a_k+1)-4k-4&=b_k+1\end{cases}$$Thus if the integer $b_k$ increases, it only increases in steps of $1$. From $b_j<0<b_n$ we see that there must be a ​first index $k$ between $j$ and $n$ for which $b_k\ge 0$. Then $b_k\le b_{k-1}+1$ and $b_{k-1}<0$, hence $b_k=0$ as desired.

Please, correct me if I am wrong.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
11
Views
3K
  • · Replies 45 ·
2
Replies
45
Views
6K